XViT - Space-time Mixing Attention for Video Transformer

Overview

XViT - Space-time Mixing Attention for Video Transformer

This is the official implementation of the XViT paper:

@inproceedings{bulat2021space,
  title={Space-time Mixing Attention for Video Transformer},
  author={Bulat, Adrian and Perez-Rua, Juan-Manuel and Sudhakaran, Swathikiran and Martinez, Brais and Tzimiropoulos, Georgios},
  booktitle={NeurIPS},
  year={2021}
}

In XViT, we introduce a novel Video Transformer model the complexity of which scales linearly with the number of frames in the video sequence and hence induces no overhead compared to an image-based Transformer model. To achieve this, our model makes two approximations to the full space-time attention used in Video Transformers: (a) It restricts time attention to a local temporal window and capitalizes on the Transformer's depth to obtain full temporal coverage of the video sequence. (b) It uses efficient space-time mixing to attend jointly spatial and temporal locations without inducing any additional cost on top of a spatial-only attention model. We also show how to integrate 2 very lightweight mechanisms for global temporal-only attention which provide additional accuracy improvements at minimal computational cost. Our model produces very high recognition accuracy on the most popular video recognition datasets while at the same time is significantly more efficient than other Video Transformer models.

Attention pattern

Model Zoo

We provide a series of models pre-trained on Kinetics-600 and Something-Something-v2.

Kinetics-600

Architecture frames views Top-1 Top-5 url
XViT-B16 16 3x1 84.51% 96.26% model
XViT-B16 16 3x2 84.71% 96.39% model

Something-Something-V2

Architecture frames views Top-1 Top-5 url
XViT-B16 16 32x2 67.19% 91.00% model

Installation

Please make sure your setup satisfies the following requirements:

Requirements

Largely follows the original SlowFast repo requirements:

  • Python >= 3.8
  • Numpy
  • PyTorch >= 1.3
  • hdf5
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this.
  • simplejson: pip install simplejson
  • GCC >= 4.9
  • PyAV: conda install av -c conda-forge
  • ffmpeg (4.0 is prefereed, will be installed along with PyAV)
  • PyYaml: (will be installed along with fvcore)
  • tqdm: (will be installed along with fvcore)
  • iopath: pip install -U iopath or conda install -c iopath iopath
  • psutil: pip install psutil
  • OpenCV: pip install opencv-python
  • torchvision: pip install torchvision or conda install torchvision -c pytorch
  • tensorboard: pip install tensorboard
  • PyTorchVideo: pip install pytorchvideo
  • Detectron2:
    pip install -U torch torchvision cython
    pip install -U 'git+https://github.com/facebookresearch/fvcore.git' 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
    git clone https://github.com/facebookresearch/detectron2 detectron2_repo
    pip install -e detectron2_repo
    # You can find more details at https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md

Datasets

1. Kenetics

You can download Kinetics 400/600 datasets following the instructions provided by the cvdfundation repo: https://github.com/cvdfoundation/kinetics-dataset

Afterwars, resize the videos to the shorte edge size of 256 and prepare the csv files for training, validation in testting: train.csv, val.csv, test.csv. The formatof the csv file is:

path_to_video_1 label_1
path_to_video_2 label_2
...
path_to_video_N label_N

Depending on your system, we recommend decoding the videos to frames and then packing each set of frames into a h5 file with the same name as the original video.

2. Something-Something v2

You can download the datasets from the authors webpage: https://20bn.com/datasets/something-something

Perform the same packing procedure as for Kinetics.

Usage

Training

python tools/run_net.py \
  --cfg configs/Kinetics/xvit_B16_16x16_k600.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset

Evaluation

python tools/run_net.py \
  --cfg configs/Kinetics/xvit_B16_16x16_k600.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TRAIN.ENABLE False \

Acknowledgements

This repo is built using components from SlowFast and timm

License

XViT code is released under the Apache 2.0 license.

Owner
Adrian Bulat
AI Researcher at Samsung AI, member of the deeplearning cult.
Adrian Bulat
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
September-Assistant - Open-source Windows Voice Assistant

September - Windows Assistant September is an open-source Windows personal assis

The Nithin Balaji 9 Nov 22, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022