Self-Supervised Methods for Noise-Removal

Related tags

Deep LearningSSMNR
Overview

SSMNR | Self-Supervised Methods for Noise Removal

Image denoising is the task of removing noise from an image, which can be formulated as the task of separating the noise signal from the meaningful information in images. Traditionally, this has been addressed both by spatial domain methods and transfer domain methods. However, from around 2016 onwards, image denoising techniques based on neural networks have started to outperfom these methods, with CNN-based denoisers obtaining impressive results.

One limitation to the use of neural-network based denoisers in many applications is the need for extensive, labeled datasets containing both noised images, and ground-truth, noiseless images. In answer to this, multiple works have explored the use of semi-supervised approaches for noise removal, requiring either noised image pairs but no clean target images (Noise2Noise) or, more recently, no additional data than the noised image (Noise2Void). This project aims at studying these approaches for the task of noise removal, and re-implementing them in PyTorch.

This repository contains our code for this task. This code is heavily based on both the original implementation of the Noise2Void article available here, on other implementations and PyTorch/TensorFlow reproducibility challenges here and here, on the U-NET Transformer architecture available here, as well as some base code from our teachers for a project on bird species recognition.

Data

Data used to train and evaluate the algorithm consists mostly in:

No noiseless data was used to train the models.

Usage

To reproduce these results, please start by cloning the repository locally:

git clone https://github.com/bglbrt/SSMNR.git

Then, install the required libraries:

pip install -r requirements.txt

Denoising images (with provided, pre-trained weights)

To denoise an image or multiple images from a specified directory, run:

python main.py --mode denoise --model "model" --images_path "path/to/image/or/dir" --weights "path/to/model/weights"

Provided pre-trained weights are formatted as: "models/model_"+model_name+_+noise_type+sigma+".pth".

Available weights are:

  • weights for the N2V model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G15.pth
    • models/model_N2V_G25.pth
    • models/model_N2V_G35.pth
    • models/model_N2V_G50.pth
  • weights for the N2VT (N2V with U-NET Transformer) model:
    • models/model_N2V_G5.pth (please contact us to obtain weights)
    • models/model_N2V_G10.pth (please contact us to obtain weights)
    • models/model_N2V_G25.pth (please contact us to obtain weights)

Options available for denoising are:

  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --images_path: Path to image or directory of images to denoise.
    • default: None
  • --model: Name of model for noise removal
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training.
    • default: None
  • --slide: Sliding window size for denoising and evaluation
    • default: 32
  • --use_cuda: Use of GPU or CPU
    • default: 32

Evaluation

To evaluate a model using a dataset in a specified directory, run:

python main.py --mode eval --model "model" --images_path "path/to/image/or/dir" --weights "path/to/model/weights"

Note that the data located at path/to/image/or/dir must include a folder named original with noiseless images.

Evaluation methods include:

  • N2V (Noise2Void with trained weights)
  • N2VT (Noise2VoidTransformer with trained weights)
  • BM3D (Block-Matching and 3D Filtering)
  • MEAN (5x5 mean filter)
  • MEDIAN (5x5 median filter)

Provided pre-trained weights for N2V and N2VT are formatted as: "models/model_"+model_name+_+noise_type+sigma+".pth".

Available weights are:

  • weights for the N2V model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G15.pth
    • models/model_N2V_G25.pth
    • models/model_N2V_G35.pth
    • models/model_N2V_G50.pth
  • weights for the N2VT (N2V with U-NET Transformer) model:
    • models/model_N2V_G5.pth
    • models/model_N2V_G10.pth
    • models/model_N2V_G25.pth

Options available for evaluation are:

  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --images_path: Path to image or directory of images to evaluate.
    • default: None
  • --model: Name of model for noise removal
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training.
    • default: None
  • --slide: Sliding window size for denoising and evaluation
    • default: 32
  • --use_cuda: Use of GPU or CPU
    • default: 32

Training

To train weights for the N2V and N2VT models using data located in the data folder, run:

python main.py data "data" --model "N2V" --mode train"

Note that the data folder must contain two folders named train and validation.

Options available for training are:

  • --data: Folder where training and testing data is located.
    • default: data
  • --mode: Training (train), denoising (denoise) or evaluation (eval) mode
    • default: train
  • --model: Name of model for noise removal.
    • default: N2V
  • --n_channels: Number of channels in images - i.e. RGB or Grayscale images
    • default: 3
  • --input_size: Model patches input size
    • default: 64
  • --masking_method: Blind-spot masking method
    • default: UPS
  • --window: Window for blind-spot masking method in UPS
    • default: 5
  • --n_feat: Number of feature maps of the first convolutional layer
    • default: 96
  • --noise_type: Noise type from Gaussian (G), Poisson (P) and Impulse (I)
    • default: G
  • --ratio: Ratio for number of blind-spot pixels in patch
    • default: 1/64
  • --from_pretrained: Train model from pre-trained weights
    • default: False
  • --weights: Path to weights to use for denoising, evaluation, or fine-tuning when training
    • default: None
  • --weights_init_method: Weights initialization method
    • default: kaiming
  • --loss: Loss function for training
    • default: L2
  • --batch_size: Batch size for training data
    • default: 64
  • --epochs: Number of epochs to train the model.
    • default: 300
  • --steps_per_epoch: Number of steps per epoch for training
    • default: 100
  • --sigma: Noise parameter for creating labels - depends on distribution
    • default: 25
  • --lr: Learning rate
    • default: 4e-4
  • --wd: Weight decay for RAdam optimiser
    • default: 1e-4
  • --use_cuda: Use of GPU or CPU
    • default: 32
  • --seed: Random seed
    • default: 1

Required libraries

The files present on this repository require the following libraries (also listed in requirements.txt):

Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022