An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Overview

Semisupervised Multitask Learning

This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch.

This code primarily deals with the tasks of sematic segmentation, instance segmentation, depth prediction learned in a multi-task setting (with a shared encoder) on a synthetic dataset and then adapted to another dataset with a domain shift. Specifically for this implementation the aim is to learn the three tasks on the Cityscapes Dataset, then adapt and evaluate performance in a fully unsupervised or a semi-supervised setting on the IDD Dataset.

The architecture used for the semantic and instance segmentation model is taken from Panoptic Deeplab[2]. While a choice for the depth decoder is offered between BTS[3] and FCRN-Depth[4].

Usage

The following commands can be used to run the codebase, please make sure to see the respective papers for more details.

  1. To train the base encoder on the Cityscapes (or any other dataset with appropriate modifications) use the following command. Additional flags can also be set as required:

    python base_trainer.py --name BaseRun --cityscapes_dir /path/to/cityscapes

  2. Then train the CCR Regularizer as proposed in UM-Adapt with the following command:

    python ccr_trainer.py --base_name BaseRun --cityscapes_dir /path/to/cityscapes --hed_path /path/to/pretrained/HED-Network

  3. Unsupervised adaptation to IDD can now be performed using:

    python idd_adapter.py --name AdaptIDD --base_name BaseRun --cityscapes_dir /path/to/cityscapes --idd_dir /path/to/idd --hed_path /path/to/pretrained/HED-Network

  4. Further optional semi-supervised fine-tuning can be done using:

    python idd_supervised.py --name SupervisedIDD --base_name BaseRun --idd_name AdaptIDD --idd_epoch 10 --idd_dir /path/to/idd --hed_path /path/to/pretrained/HED-Network --supervised_pct 0.5

The code can generally be modified to suit any dataset as required, the base architectures of different decoders as well as the shared encoders can also be altered as needed.

References

If you find this code helpful in your research, please consider citing the following papers.

[1]  @inproceedings{Kundu_2019_ICCV,
        author = {Kundu, Jogendra Nath and Lakkakula, Nishank and Babu, R. Venkatesh},
        title = {UM-Adapt: Unsupervised Multi-Task Adaptation Using Adversarial Cross-Task Distillation},
        booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
        month = {October},
        year = {2019}
    }
[2]  @inproceedings{cheng2020panoptic,
        author={Cheng, Bowen and Collins, Maxwell D and Zhu, Yukun and Liu, Ting and Huang, Thomas S and Adam, Hartwig and Chen, Liang-Chieh},
        title={Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation},
        booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
        month = {June},
        year = {2020}
    }
[3]  @article{lee2019big,
        title={From big to small: Multi-scale local planar guidance for monocular depth estimation},
        author={Lee, Jin Han and Han, Myung-Kyu and Ko, Dong Wook and Suh, Il Hong},
        journal={arXiv preprint arXiv:1907.10326},
        year={2019}
}
[4]  @inproceedings{Xie_ICCV_2015,
         author = {Saining Xie and Zhuowen Tu},
         title = {Holistically-Nested Edge Detection},
         booktitle = {IEEE International Conference on Computer Vision},
         year = {2015}
     }
[5]  @misc{pytorch-hed,
         author = {Simon Niklaus},
         title = {A Reimplementation of {HED} Using {PyTorch}},
         year = {2018},
         howpublished = {\url{https://github.com/sniklaus/pytorch-hed}}
    }

If you use either of Cityscapes or IDD datasets, consider citing them

@inproceedings{Cordts2016Cityscapes,
    title={The Cityscapes Dataset for Semantic Urban Scene Understanding},
    author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
    booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2016}
}
@article{DBLP:journals/corr/abs-1811-10200,,
    title={IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments},
    author = {Varma, Girish and Subramanian, Anbumani and Namboodiri, Anoop and Chandraker, Manmohan and Jawahar, C.V.}
    journal={arXiv preprint arXiv:1811.10200},
    year={2018}

Finally, if you use the Xception backbone, please consider citing

@inproceedings{deeplabv3plus2018,
    title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
    author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
    booktitle={ECCV},
    year={2018}
}

Acknowledgements

Utility functions from many wonderful open-source projects were used, I would like to especially thank the authors of:

Owner
Abhinav Atrishi
Abhinav Atrishi
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning ๐Ÿงฉ Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muรฑoz 10 Mar 15, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernรกndez Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
๐Ÿง‘โ€๐Ÿ”ฌ verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
ใ€ŒPyTorch Implementation of AnimeGANv2ใ€ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒข

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒขใงใ™ใ€‚

KazuhitoTakahashi 21 Oct 18, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022