Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Overview

Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

TMER

Code of paper "Temporal Meta-path Guided Explainable Recommendation".

Requirements

python==3.6.12
networkx==2.5
numpy==1.15.0
pandas==1.0.1
pytorch==1.0.0
pytorch-nlp==0.5.0
gensim==3.8.3

You can also install the environment via requirements.txt and environment.yaml.

Data Preparation

The original data can be found in the amazon data website.

For example, the meta_Musical_Instruments.json of Amazon_Music can be found here. The user_rate_item.csv in the code is here (ratings only).

Usage

If you want to change the dataset, you can modify the name in the code.

1.process data (You can ignore this step, if you just want to check TMER.)

python data_process.py

2.learn the user and item representations

python data/path/embed_nodes.py

3.learn the item-item path representations

python data/path/user_history/item_item_representation.py

4.learn the user-item path representations

python data/user_item_representation.py

5.generate user-item and item-item meta-path instances and learn their representations

python data/path/generate_paths.py
python data/path/user_history/meta_path_instances_representation.py

6.sequence item-item paths for each user

python data/path/user_history/user_history.py

7.run the recommendation

python run.py

Cite

If you find this code useful in your research, please consider citing:

@article{chen2021temporal,
  title={Temporal Meta-path Guided Explainable Recommendation},
  author={Chen, Hongxu and Li, Yicong and Sun, Xiangguo and Xu, Guandong and Yin, Hongzhi},
  journal={arXiv preprint arXiv:2101.01433},
  year={2021}
}

or

@inproceedings{10.1145/3437963.3441762,
	author = {Chen, Hongxu and Li, Yicong and Sun, Xiangguo and Xu, Guandong and Yin, Hongzhi},
	title = {Temporal Meta-Path Guided Explainable Recommendation},
	year = {2021},
	booktitle = {Proceedings of the 14th ACM International Conference on Web Search and Data Mining},
	pages = {1056–1064}
}
Owner
Yicong Li
My research interests are recommendation system, natural language processing and topic model. Feel free to contact me.
Yicong Li
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".

GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement

98 Dec 28, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022