ML-Decoder: Scalable and Versatile Classification Head

Overview

ML-Decoder: Scalable and Versatile Classification Head

PWC
PWC
PWC


Paper

Official PyTorch Implementation

Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baruch, Asaf Noy
DAMO Academy, Alibaba Group

Abstract

In this paper, we introduce ML-Decoder, a new attention-based classification head. ML-Decoder predicts the existence of class labels via queries, and enables better utilization of spatial data compared to global average pooling. By redesigning the decoder architecture, and using a novel group-decoding scheme, ML-Decoder is highly efficient, and can scale well to thousands of classes. Compared to using a larger backbone, ML-Decoder consistently provides a better speed-accuracy trade-off. ML-Decoder is also versatile - it can be used as a drop-in replacement for various classification heads, and generalize to unseen classes when operated with word queries. Novel query augmentations further improve its generalization ability. Using ML-Decoder, we achieve state-of-the-art results on several classification tasks: on MS-COCO multi-label, we reach 91.4% mAP; on NUS-WIDE zero-shot, we reach 31.1% ZSL mAP; and on ImageNet single-label, we reach with vanilla ResNet50 backbone a new top score of 80.7%, without extra data or distillation.

ML-Decoder Implementation

ML-Decoder implementation is available here. It can be easily integrated into any backbone using this example code:

ml_decoder_head = MLDecoder(num_classes) # initilization

spatial_embeddings = self.backbone(input_image) # backbone generates spatial embeddings      
 
logits = ml_decoder_head(spatial_embeddings) # transfrom spatial embeddings to logits

Training Code

We will share a full reproduction code for the article results.

Multi-label Training Code


A reproduction code for MS-COCO multi-label:

python train.py  \
--data=/home/datasets/coco2014/ \
--model_name=tresnet_l \
--image_size=448

Single-label Training Code

Our single-label training code uses the excellent timm repo. Reproduction code is currently from a fork, we will work toward a full merge to the main repo.

git clone https://github.com/mrT23/pytorch-image-models.git

This is the code for A2 configuration training, with ML-Decoder (--use-ml-decoder-head=1):

python -u -m torch.distributed.launch --nproc_per_node=8 \
--nnodes=1 \
--node_rank=0 \
./train.py \
/data/imagenet/ \
--amp \
-b=256 \
--epochs=300 \
--drop-path=0.05 \
--opt=lamb \
--weight-decay=0.02 \
--sched='cosine' \
--lr=4e-3 \
--warmup-epochs=5 \
--model=resnet50 \
--aa=rand-m7-mstd0.5-inc1 \
--reprob=0.0 \
--remode='pixel' \
--mixup=0.1 \
--cutmix=1.0 \
--aug-repeats 3 \
--bce-target-thresh 0.2 \
--smoothing=0 \
--bce-loss \
--train-interpolation=bicubic \
--use-ml-decoder-head=1

ZSL Training Code

Reproduction code for ZSL is WIP.

Citation

@misc{ridnik2021mldecoder,
      title={ML-Decoder: Scalable and Versatile Classification Head}, 
      author={Tal Ridnik and Gilad Sharir and Avi Ben-Cohen and Emanuel Ben-Baruch and Asaf Noy},
      year={2021},
      eprint={2111.12933},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022