Voice Gender Recognition

Overview

Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Models implemented by Anne Livia.

Dataset Information:

  • This dataset was obtained from Kaggle on this link by Kory Becker and was created to identify a voice as male or female, based upon acoustic properties of the voice and speech.
  • The dataset consists of 3,168 recorded voice samples, collected from male and female speakers. The voice samples are pre-processed by acoustic analysis in R using the seewave and tuneR packages, with an analyzed frequency range of 0hz-280hz (human vocal range).

Properties:

  • meanfreq: mean frequency (in kHz)
  • sd: standard deviation of frequency
  • median: median frequency (in kHz)
  • Q25: first quantile (in kHz)
  • Q75: third quantile (in kHz)
  • IQR: interquantile range (in kHz)
  • skew: skewness (see note in specprop description)
  • kurt: kurtosis (see note in specprop description)
  • sp.ent: spectral entropy
  • sfm: spectral flatness
  • mode: mode frequency
  • centroid: frequency centroid (see specprop)
  • meanfun: average of fundamental frequency measured across acoustic signal
  • minfun: minimum fundamental frequency measured across acoustic signal
  • maxfun: maximum fundamental frequency measured across acoustic signal
  • meandom: average of dominant frequency measured across acoustic signal
  • mindom: minimum of dominant frequency measured across acoustic signal
  • maxdom: maximum of dominant frequency measured across acoustic signal
  • dfrange: range of dominant frequency measured across acoustic signal
  • modindx: modulation index. Calculated as the accumulated absolute difference between adjacent measurements of fundamental ---- **frequencies divided by the frequency range
  • label: male or female

Software Informations

  • Python
  • Scikit-learn
  • Matplotlib
  • Seaborn

Trained Models

  • Decision Tree Model

    • Acurracy: 0.9652996845425867

    • Precision: 0.9715189873417721

    • Recall: 0.959375

    • F1-Score: 0.9654088050314465

    • Confusion Matrix, Feature Importance, and Precision-Recall Curve respectively:

      plots for decision tree model
  • Random Forest Model

    • Acurracy: 0.9810725552050473

    • Precision: 0.9842767295597484

    • Recall: 0.978125

    • F1-Score: 0.9811912225705329

    • Confusion Matrix, Feature Importance, and Precision-Recall Curve respectively:

      plots for random forest
  • Extra Tree Model

    • Acurracy: 0.9873817034700315

    • Precision: 0.9905660377358491

    • Recall: 0.984375

    • F1-Score: 0.9874608150470221

    • Confusion Matrix, Feature Importance, and Precision-Recall Curve respectively:

      plots for extra tree
  • XGBoost model

    • Acurracy: 0.9873817034700315

    • Precision: 0.9905660377358491

    • Recall: 0.984375

    • F1-Score: 0.9874608150470221

    • Confusion Matrix, Feature Importance, and Precision-Recall Curve respectively:

      plots for xgboost
Owner
Anne Livia
Undergraduate student in Information Systems
Anne Livia
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
EMNLP 2021 - Frustratingly Simple Pretraining Alternatives to Masked Language Modeling

Frustratingly Simple Pretraining Alternatives to Masked Language Modeling This is the official implementation for "Frustratingly Simple Pretraining Al

Atsuki Yamaguchi 31 Nov 18, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022