Compare neural networks by their feature similarity

Overview

PyTorch Model Compare

A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and scalable way is using the Centered Kernel Alignment (CKA) metric, where the features of the networks are compared.

Centered Kernel Alignment

Centered Kernel Alignment (CKA) is a representation similarity metric that is widely used for understanding the representations learned by neural networks. Specifically, CKA takes two feature maps / representations X and Y as input and computes their normalized similarity (in terms of the Hilbert-Schmidt Independence Criterion (HSIC)) as

CKA original version

Where K and L are similarity matrices of X and Y respectively. However, the above formula is not scalable against deep architectures and large datasets. Therefore, a minibatch version can be constructed that uses an unbiased estimator of the HSIC as

alt text

alt text

The above form of CKA is from the 2021 ICLR paper by Nguyen T., Raghu M, Kornblith S.

Getting Started

Installation

pip install torch_cka

Usage

from torch_cka import CKA
model1 = resnet18(pretrained=True)  # Or any neural network of your choice
model2 = resnet34(pretrained=True)

dataloader = DataLoader(your_dataset, 
                        batch_size=batch_size, # according to your device memory
                        shuffle=False)  # Don't forget to seed your dataloader

cka = CKA(model1, model2,
          model1_name="ResNet18",   # good idea to provide names to avoid confusion
          model2_name="ResNet34",   
          model1_layers=layer_names_resnet18, # List of layers to extract features from
          model2_layers=layer_names_resnet34, # extracts all layer features by default
          device='cuda')

cka.compare(dataloader) # secondary dataloader is optional

results = cka.export()  # returns a dict that contains model names, layer names
                        # and the CKA matrix

Examples

torch_cka can be used with any pytorch model (subclass of nn.Module) and can be used with pretrained models available from popular sources like torchHub, timm, huggingface etc. Some examples of where this package can come in handy are illustrated below.

Comparing the effect of Depth

A simple experiment is to analyse the features learned by two architectures of the same family - ResNets but of different depths. Taking two ResNets - ResNet18 and ResNet34 - pre-trained on the Imagenet dataset, we can analyse how they produce their features on, say CIFAR10 for simplicity. This comparison is shown as a heatmap below.

alt text

We see high degree of similarity between the two models in lower layers as they both learn similar representations from the data. However at higher layers, the similarity reduces as the deeper model (ResNet34) learn higher order features which the is elusive to the shallower model (ResNet18). Yet, they do indeed have certain similarity in their last fc layer which acts as the feature classifier.

Comparing Two Similar Architectures

Another way of using CKA is in ablation studies. We can go further than those ablation studies that only focus on resultant performance and employ CKA to study the internal representations. Case in point - ResNet50 and WideResNet50 (k=2). WideResNet50 has the same architecture as ResNet50 except having wider residual bottleneck layers (by a factor of 2 in this case).

alt text

We clearly notice that the learned features are indeed different after the first few layers. The width has a more pronounced effect in deeper layers as compared to the earlier layers as both networks seem to learn similar features in the initial layers.

As a bonus, here is a comparison between ViT and the latest SOTA model Swin Transformer pretrained on ImageNet22k.

alt text

Comparing quite different architectures

CNNs have been analysed a lot over the past decade since AlexNet. We somewhat know what sort of features they learn across their layers (through visualizations) and we have put them to good use. One interesting approach is to compare these understandable features with newer models that don't permit easy visualizations (like recent vision transformer architectures) and study them. This has indeed been a hot research topic (see Raghu et.al 2021).

alt text

Comparing Datasets

Yet another application is to compare two datasets - preferably two versions of the data. This is especially useful in production where data drift is a known issue. If you have an updated version of a dataset, you can study how your model will perform on it by comparing the representations of the datasets. This can be more telling about actual performance than simply comparing the datasets directly.

This can also be quite useful in studying the performance of a model on downstream tasks and fine-tuning. For instance, if the CKA score is high for some features on different datasets, then those can be frozen during fine-tuning. As an example, the following figure compares the features of a pretrained Resnet50 on the Imagenet test data and the VOC dataset. Clearly, the pretrained features have little correlation with the VOC dataset. Therefore, we have to resort to fine-tuning to get at least satisfactory results.

alt text

Tips

  • If your model is large (lots of layers or large feature maps), try to extract from select layers. This is to avoid out of memory issues.
  • If you still want to compare the entire feature map, you can run it multiple times with few layers at each iteration and export your data using cka.export(). The exported data can then be concatenated to produce the full CKA matrix.
  • Give proper model names to avoid confusion when interpreting the results. The code automatically extracts the model name for you by default, but it is good practice to label the models according to your use case.
  • When providing your dataloader(s) to the compare() function, it is important that they are seeded properly for reproducibility.
  • When comparing datasets, be sure to set drop_last=True when building the dataloader. This resolves shape mismatch issues - especially in differently sized datasets.

Citation

If you use this repo in your project or research, please cite as -

@software{subramanian2021torch_cka,
    author={Anand Subramanian},
    title={torch_cka},
    url={https://github.com/AntixK/PyTorch-Model-Compare},
    year={2021}
}
Owner
Anand Krishnamoorthy
Research Engineer
Anand Krishnamoorthy
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022