BRepNet: A topological message passing system for solid models

Overview

BRepNet: A topological message passing system for solid models

This repository contains the an implementation of BRepNet: A topological message passing system for solid models.

BRepNet kernel image

About BRepNet

BRepNet is a neural network specifically designed to operate on solid models. It uses additional topological information present in the boundary representation (B-Rep) data structure to perform convolutions in a way which is not possible for arbitrary graphs. As B-Reps describe manifolds, they contain additional topological information which includes the ordering of edges around faces as well as the face adjacency. The topology is defined using oriented edges called coedges. Each coedge maintains an adjacency relationship with the next and previous coedge around its parent face, the mating coedge on the adjacent face, the parent face and the parent edge.

B-Rep topology and topological walks

Using this information, we can identify faces, edges and coedges in the neighborhood of some starting coedge (red), using topological walks. A topological walk is a series of instructions we move us from the starting coedge to a nearby entity. In the figure above (B) the we show a walk from the red starting coedge to its mating coedge, to the next coedge in the loop, to mating coedge and finally to the parent face. Using multiple topological walks we can define a group of entities in the neighborhood of the starting coedge. The instructions which define the neighboring entities are marked in the figure (C). The BRepNet implementation allows you to define any group of entities using a kernel file. See here for an example of a kernel file for kernel entities shown above.

Convolution

The BRepNet convolution algorithm concatenates feature vectors from the entities defined in the kernel file relative to the starting coedge (red). The resulting vector is passed through an MLP and the output becomes the hidden state for this coedge in the next network layer. The procedure is repeated for each coedge in the model, then new hidden state vectors for the faces and edges are generated by pooling the coedge hidden states onto their parent faces and edges. See the paper for more details. The actual implementation of the BRepNet convolution can been seen in the BRepNetLayer.forward() method.

Citing this work

@inproceedings{lambourne2021brepnet,
 title = {BRepNet: A Topological Message Passing System for Solid Models},
 author = {Joseph G. Lambourne and Karl D.D. Willis and Pradeep Kumar Jayaraman and Aditya Sanghi and Peter Meltzer and Hooman Shayani},
 eprint = {2104.00706},
 eprinttype = {arXiv},
 eprintclass = {cs.LG},
 booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 year = {2021}
}

Quickstart

Setting up the environment

git clone https://github.com/AutodeskAILab/BRepNet.git
cd BRepNet
conda env create -f environment.yml
conda activate brepnet

For GPU training you will need to change the pytorch install to include your cuda version. i.e.

conda install pytorch cudatoolkit=11.1 -c pytorch -c conda-forge

For training with multiple workers you may hit errors of the form OSError: [Errno 24] Too many open files. In this case you need to increase the number of available file handles on the machine using

ulimit -Sn 10000

I find I need to set the limit to 10000 for 10 worker threads.

Download the dataset

You can download the step distribution of the Fusion 360 Gallery segmentation dataset from this link. The zip is 3.2Gb. Alternatively download using curl

cd /path/to/where_you_keep_data/
curl https://fusion-360-gallery-dataset.s3-us-west-2.amazonaws.com/segmentation/s2.0.0/s2.0.0.zip -o s2.0.0.zip
unzip s2.0.0.zip

If you are interested in building your own dataset using other step files then the procedure is documented here

Processing the STEP data

Run the quickstart script to extract topology and geometry information from the step data ready to train the network.

cd BRepNet/
python -m pipeline.quickstart --dataset_dir /path/to/where_you_keep_data/s2.0.0 --num_workers 5

This may take up to 10 minutes to complete.

Training the model

You are then ready to train the model. The quickstart script should exit telling you a default command to use which should be something like

python -m train.train \
  --dataset_file /path/to/where_you_keep_data/s2.0.0/processed/dataset.json \
  --dataset_dir  /path/to/where_you_keep_data/s2.0.0/processed/ \
  --max_epochs 50

You may want to adjust the --num_workers and --gpus parameters to match your machine. The model runs with the pytorch-lightning ddp-spawn mode, so you can choose either 1 worker thread and multiple gpus or multiple threads and a single gpu. The options and hyper-parameters for BRepNet can be seen in BRepNet.add_model_specific_args in brepnet.py. For a full list of all hyper-parameters including those defined in pytorch-lightning see

python -m train.train --help

Monitoring the loss, accuracy and IoU

By default BRepNet will log data to tensorboard in a folder called logs. Each time you run the model the logs will be placed in a separate folder inside the logs directory with paths based on the date and time. At the start of training the path to the log folder will be printed into the shell. To monitory the process you can use

cd BRepNet
tensorboard --logdir logs

A trained model is also saved every time the validation loss reaches a minimum. The model will be in the same folder as the tensorboard logs

./logs/<date>/<time>/checkpoints

Testing the network

python -m eval.test \
  --dataset_file /path/to/dataset_file.json \
  --dataset_dir /path/to/data_dir \
  --model BRepNet/logs/<day>/<time>/checkpoints/epoch=x-step=x.ckpt

Visualizing the segmentation data

You can visualize the segmentation data using a Jupyter notebook and the tools in the visualization folder. An example of how to view the segmentation information in the dataset is here.

Evaluating the segmentation on your own STEP data

To evaluate the model on you own step data you can use the script evaluate_folder.py

python -m eval.evaluate_folder  \
  --dataset_dir ./example_files/step_examples
  --dataset_file ./example_files/feature_standardization/s2.0.0_step_all_features.json \
  --model ./example_files/pretrained_models/pretrained_s2.0.0_step_all_features_0519_073100.ckpt

This will loop over all step or stp files in ./example_files/step_examples and create "logits" files in example_files/step_examples/temp_working/logits. The logits files contain one row for each face in the step data. The columns give the probabilities that the corresponding face belongs to a given segment.

The notebook find_and_display_segmentation.ipynb runs through the entire process of evaluating the model and displaying the predicted segmentation.

Running the tests

If you need to run the tests then this can be done using

python -m unittest

The new data-pipeline based on Open Cascade

The original BRepNet pipeline used proprietary code to process data from solid models and convert these to network input. In an effort to make this BRepNet as reusable as possible we have converted this pipeline to work with Open Cascade and python OCC. As with any kind of translation between solid model formats, the translation to step introduces some differences in the data. These are documented here. When training with the default options given above you will obtain very similar numbers to the ones published.

License

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

Owner
Autodesk AI Lab
Autodesk AI Lab
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
This repository contains the entire code for our work "Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding"

Two-Timescale-DNN Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid Precoding This repository contains the entire code for our work

QiyuHu 3 Mar 07, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Tutel MoE: An Optimized Mixture-of-Experts Implementation

Project Tutel Tutel MoE: An Optimized Mixture-of-Experts Implementation. Supported Framework: Pytorch Supported GPUs: CUDA(fp32 + fp16), ROCm(fp32) Ho

Microsoft 344 Dec 29, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022