Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Overview

logo

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER.

@inproceedings{tedeschi-etal-2021-wikineural-combined,
    title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
    author = "Tedeschi, Simone  and
      Maiorca, Valentino  and
      Campolungo, Niccol{\`o}  and
      Cecconi, Francesco  and
      Navigli, Roberto",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.215",
    pages = "2521--2533",
    abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
}

Please consider citing our work if you use data and/or code from this repository.

In a nutshell, WikiNEuRal consists in a novel technique which builds upon a multilingual lexical knowledge base (i.e., BabelNet) and transformer-based architectures (i.e., BERT) to produce high-quality annotations for multilingual NER. It shows consistent improvements of up to 6 span-based F1-score points against state-of-the-art alternative data production methods on common benchmarks for NER. Moreover, in our paper we also present a new approach for creating interpretable word embeddings together with a Domain Adaptation algorithm, which enable WikiNEuRal to create domain-specific training corpora.

Data

Dataset Version Sentences Tokens PER ORG LOC MISC OTHER
WikiNEuRal EN 116k 2.73M 51k 31k 67k 45k 2.40M
WikiNEuRal ES 95k 2.33M 43k 17k 68k 25k 2.04M
WikiNEuRal NL 107k 1.91M 46k 22k 61k 24k 1.64M
WikiNEuRal DE 124k 2.19M 60k 32k 59k 25k 1.87M
WikiNEuRal RU 123k 2.39M 40k 26k 89k 25k 2.13M
WikiNEuRal IT 111k 2.99M 67k 22k 97k 26k 2.62M
WikiNEuRal FR 127k 3.24M 76k 25k 101k 29k 2.83M
WikiNEuRal PL 141k 2.29M 59k 34k 118k 22k 1.91M
WikiNEuRal PT 106k 2.53M 44k 17k 112k 25k 2.20M
WikiNEuRal EN DA (CoNLL) 29k 759k 12k 23k 6k 3k 0.54M
WikiNEuRal NL DA (CoNLL) 34k 598k 17k 8k 18k 6k 0.51M
WikiNEuRal DE DA (CoNLL) 41k 706k 17k 12k 23k 3k 0.61M
WikiNEuRal EN DA (OntoNotes) 48k 1.18M 20k 13k 38k 12k 1.02M

Further datasets, such as the combination of WikiNEuRal with gold-standard training data (i.e., CoNLL) or the gold-standard datasets themselves, can be obtained by simply concatenating the two train.conllu files together (e.g., data/conll/en/train.conllu and data/wikineural/en/train.conllu give CoNLL+WikiNEuRal).

How to use

  1. To train 10 models on CoNLL English, run:

    python run.py -m +train.seed_idx=0,1,2,3,4,5,6,7,8,9 data.datamodule.source=conll data.datamodule.language=en
    

    note: for the EN, ES, NL and DE versions of WikiNEuRal, you can use the CoNLL splits as validation and testing material (e.g., copy the data/conll/en/val.conllu into data/wikineural/en/). Similarly, for RU and PL you can use the BSNLP splits. For the other languages instead, you can use the scripts/create_splits.py script to split a given train.conllu file into train, dev and test sets.

  2. To produce results for the 10 trained models, run:

    bash test.sh
    

    test.sh also contains more complex bash for loops that can produce results on multiple datasets / models at once.

License

WikiNEuRal is licensed under the CC BY-SA-NC 4.0 license. The text of the license can be found here.

We underline that the source from which the raw sentences have been extracted is Wikipedia (wikipedia.org) and the NER annotations have been produced by Babelscape.

Acknowledgments

We gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 under the European Union’s Horizon2020 research and innovation programme (http://mousse-project.org/).

This work was also supported by the PerLIR project (Personal Linguistic resources in Information Retrieval) funded by the MIUR Progetti di ricerca di Rilevante Interesse Nazionale programme (PRIN2017).

The code in this repository is built on top of .

Owner
Babelscape
Babelscape is a deep tech company founded in 2016 focused on multilingual Natural Language Processing.
Babelscape
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
Pattern Matching in Python

Pattern Matching finalmente chega no Python 3.10. E daí? "Pattern matching", ou "correspondência de padrões" como é conhecido no Brasil. Algumas pesso

Fabricio Werneck 6 Feb 16, 2022
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
A single model that parses Universal Dependencies across 75 languages.

A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.

Dan Kondratyuk 189 Nov 29, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022
Rank-One Model Editing for Locating and Editing Factual Knowledge in GPT

Rank-One Model Editing (ROME) This repository provides an implementation of Rank-One Model Editing (ROME) on auto-regressive transformers (GPU-only).

Kevin Meng 130 Dec 21, 2022
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022