Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Overview

logo

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER.

@inproceedings{tedeschi-etal-2021-wikineural-combined,
    title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
    author = "Tedeschi, Simone  and
      Maiorca, Valentino  and
      Campolungo, Niccol{\`o}  and
      Cecconi, Francesco  and
      Navigli, Roberto",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-emnlp.215",
    pages = "2521--2533",
    abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
}

Please consider citing our work if you use data and/or code from this repository.

In a nutshell, WikiNEuRal consists in a novel technique which builds upon a multilingual lexical knowledge base (i.e., BabelNet) and transformer-based architectures (i.e., BERT) to produce high-quality annotations for multilingual NER. It shows consistent improvements of up to 6 span-based F1-score points against state-of-the-art alternative data production methods on common benchmarks for NER. Moreover, in our paper we also present a new approach for creating interpretable word embeddings together with a Domain Adaptation algorithm, which enable WikiNEuRal to create domain-specific training corpora.

Data

Dataset Version Sentences Tokens PER ORG LOC MISC OTHER
WikiNEuRal EN 116k 2.73M 51k 31k 67k 45k 2.40M
WikiNEuRal ES 95k 2.33M 43k 17k 68k 25k 2.04M
WikiNEuRal NL 107k 1.91M 46k 22k 61k 24k 1.64M
WikiNEuRal DE 124k 2.19M 60k 32k 59k 25k 1.87M
WikiNEuRal RU 123k 2.39M 40k 26k 89k 25k 2.13M
WikiNEuRal IT 111k 2.99M 67k 22k 97k 26k 2.62M
WikiNEuRal FR 127k 3.24M 76k 25k 101k 29k 2.83M
WikiNEuRal PL 141k 2.29M 59k 34k 118k 22k 1.91M
WikiNEuRal PT 106k 2.53M 44k 17k 112k 25k 2.20M
WikiNEuRal EN DA (CoNLL) 29k 759k 12k 23k 6k 3k 0.54M
WikiNEuRal NL DA (CoNLL) 34k 598k 17k 8k 18k 6k 0.51M
WikiNEuRal DE DA (CoNLL) 41k 706k 17k 12k 23k 3k 0.61M
WikiNEuRal EN DA (OntoNotes) 48k 1.18M 20k 13k 38k 12k 1.02M

Further datasets, such as the combination of WikiNEuRal with gold-standard training data (i.e., CoNLL) or the gold-standard datasets themselves, can be obtained by simply concatenating the two train.conllu files together (e.g., data/conll/en/train.conllu and data/wikineural/en/train.conllu give CoNLL+WikiNEuRal).

How to use

  1. To train 10 models on CoNLL English, run:

    python run.py -m +train.seed_idx=0,1,2,3,4,5,6,7,8,9 data.datamodule.source=conll data.datamodule.language=en
    

    note: for the EN, ES, NL and DE versions of WikiNEuRal, you can use the CoNLL splits as validation and testing material (e.g., copy the data/conll/en/val.conllu into data/wikineural/en/). Similarly, for RU and PL you can use the BSNLP splits. For the other languages instead, you can use the scripts/create_splits.py script to split a given train.conllu file into train, dev and test sets.

  2. To produce results for the 10 trained models, run:

    bash test.sh
    

    test.sh also contains more complex bash for loops that can produce results on multiple datasets / models at once.

License

WikiNEuRal is licensed under the CC BY-SA-NC 4.0 license. The text of the license can be found here.

We underline that the source from which the raw sentences have been extracted is Wikipedia (wikipedia.org) and the NER annotations have been produced by Babelscape.

Acknowledgments

We gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 under the European Union’s Horizon2020 research and innovation programme (http://mousse-project.org/).

This work was also supported by the PerLIR project (Personal Linguistic resources in Information Retrieval) funded by the MIUR Progetti di ricerca di Rilevante Interesse Nazionale programme (PRIN2017).

The code in this repository is built on top of .

Owner
Babelscape
Babelscape is a deep tech company founded in 2016 focused on multilingual Natural Language Processing.
Babelscape
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
This is a GUI program that will generate a word search puzzle image

Word Search Puzzle Generator Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing Cont

11 Feb 22, 2022
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Repository of the Code to Chatbots, developed in Python

Description In this repository you will find the Code to my Chatbots, developed in Python. I'll explain the structure of this Repository later. Requir

Li-am K. 0 Oct 25, 2022
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
Resources for "Natural Language Processing" Coursera course.

Natural Language Processing course resources This github contains practical assignments for Natural Language Processing course by Higher School of Eco

Advanced Machine Learning specialisation by HSE 1.1k Jan 01, 2023