An implementation of based on pytorch and mmcv

Overview

FisherPruning-Pytorch

An implementation of <Group Fisher Pruning for Practical Network Compression> based on pytorch and mmcv


Main Functions

  • Pruning for fully-convolutional structures, such as one-stage detectors; (copied from the official code)

  • Pruning for networks combining convolutional layers and fully-connected layers, such as faster-RCNN and ResNet;

  • Pruning for networks which involve group convolutions, such as ResNeXt and RegNet.

Usage

Requirements

torch
torchvision
mmcv / mmcv-full
mmcls 
mmdet 

Compatibility

This code is tested with

pytorch=1.3
torchvision=0.4
cudatoolkit=10.0
mmcv-full==1.3.14
mmcls=0.16 
mmdet=2.17

and

pytorch=1.8
torchvision=0.9
cudatoolkit=11.1
mmcv==1.3.16
mmcls=0.16 
mmdet=2.17

Data

Download ImageNet and COCO, then extract them and organize the folders as

- detection
  |- tools
  |- configs
  |- data
  |   |- coco
  |   |   |- train2017
  |   |   |- val2017
  |   |   |- test2017
  |   |   |- annotations
  |
- classification
  |- tools
  |- configs
  |- data
  |   |- imagenet
  |   |   |- train
  |   |   |- val
  |   |   |- test 
  |   |   |- meta
  |
- ...

Commands

e.g. Classification

cd classification
  1. Pruning

    # single GPU
    python tools/train.py configs/xxx_pruning.py --gpus=1
    # multi GPUs (e.g. 4 GPUs)
    python -m torch.distributed.launch --nproc_per_node=4 tools/train.py configs/xxx_pruning.py --launch pytorch
  2. Fine-tune

    In the config file, modify the deploy_from to the pruned model, and modify the samples_per_gpu to 256/#GPUs. Then

    # single GPU
    python tools/train.py configs/xxx_finetune.py --gpus=1
    # multi GPUs (e.g. 4 GPUs)
    python -m torch.distributed.launch --nproc_per_node=4 tools/train.py configs/xxx_finetune.py --launch pytorch
  3. Test

    In the config file, add the attribute load_from to the finetuned model. Then

    python tools/test.py configs/xxx_finetune.py --metrics=accuracy

The commands for pruning and finetuning of detection models are similar to that of classification models. Instructions will be added soon.

Acknowledgments

My project acknowledges the official code FisherPruning.

Owner
Peng Lu
Peng Lu
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022