Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Overview

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Project Structure

./
├── DataProcess
│   ├── __pycache__
│   ├── convert2bio.py
│   ├── convert_jsonl.py
│   ├── handle_numbers.py
│   ├── load_data.py
│   └── statistic.py
├── README.md
├── __pycache__
├── chinese_L-12_H-768_A-12                                    BERT权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── chinese_bert_wwm                                           BERT_wwm权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── chinese_macbert_base                                       macBERT权重
│   ├── chinese_macbert_base.ckpt.data-00000-of-00001
│   ├── chinese_macbert_base.ckpt.index
│   ├── chinese_macbert_base.ckpt.meta
│   ├── macbert_base_config.json
│   └── vocab.txt
├── chinese_roberta_wwm_ext_L-12_H-768_A-12                    roberta权重
│   ├── bert_config.json
│   ├── bert_model.ckpt.data-00000-of-00001
│   ├── bert_model.ckpt.index
│   ├── bert_model.ckpt.meta
│   └── vocab.txt
├── config                                                     
│   ├── __pycache__
│   ├── config.py                                              配置文件
│   └── pulmonary_label2id.json                                label id
├── data                                                       数据集
│   ├── pulmonary.test
│   ├── pulmonary.train
│   └── sict_train.txt
├── environment.yaml                                           conda环境配置文件
├── evaluate.py
├── generator_train.py
├── keras_bert                                                 keras_bert(可pip下)
├── keras_contrib                                              keras_contrib(可pip下)
├── log                                                        训练nohup日志
│   ├── chinese_L-12_H-768_A-12.out
│   ├── chinese_macbert_base.out
│   ├── chinese_roberta_wwm_ext_L-12_H-768_A-12.out
│   └── electra_180g_base.out
├── model.py                                                   模型构建文件
├── models                                                     保存的模型权重
│   ├── pulmonary_chinese_L-12_H-768_A-12_ner.h5
│   ├── pulmonary_chinese_bert_wwm_ner.h5
│   ├── pulmonary_chinese_macbert_base_ner.h5
│   └── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_ner.h5
├── predict.py                                                 预测
├── report                                                     模型实体F1评估报告
│   ├── pulmonary_chinese_L-12_H-768_A-12_evaluate.txt
│   ├── pulmonary_chinese_L-12_H-768_A-12_predict.json
│   ├── pulmonary_chinese_bert_wwm_evaluate.txt
│   ├── pulmonary_chinese_bert_wwm_predict.json
│   ├── pulmonary_chinese_macbert_base_evaluate.txt
│   ├── pulmonary_chinese_macbert_base_predict.json
│   ├── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_evaluate.txt
│   └── pulmonary_chinese_roberta_wwm_ext_L-12_H-768_A-12_predict.json
├── requirements.txt                                           pip环境
├── test.py                                                    
├── train.py                                                   训练
└── utils                                                      
    ├── FGM.py                                                 FGM对抗
    ├── __pycache__
    └── path.py                                                所有路径

56 directories, 193 files

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用空格("\ ")隔开
  • 其中句子与句子之间使用空行隔开

Steps

  1. 替换数据集
  2. 使用DataProcess/load_data.py生成label2id.txt文件
  3. 修改config/config.py中的MAX_SEQ_LEN(超过截断,少于填充,最好设置训练集、测试集中最长句子作为MAX_SEQ_LEN)
  4. 下载权重,放到项目中
  5. 修改public/path.py中的地址
  6. 根据需要修改model.py模型结构
  7. 修改config/config.py的参数
  8. 训练前debug看下input_train_labels,result_train对不对,input_train_types全是0
  9. 训练

Model

BERT

roberta

macBERT

BERT_wwm

Train

运行train.py

Evaluate

运行evaluate/f1_score.py

BERT

           precision    recall  f1-score   support

     SIGN     0.6651    0.7354    0.6985       189
  ANATOMY     0.8333    0.8409    0.8371       220
 DIAMETER     1.0000    1.0000    1.0000        16
  DISEASE     0.4915    0.6744    0.5686        43
 QUANTITY     0.8837    0.9157    0.8994        83
TREATMENT     0.3571    0.5556    0.4348         9
  DENSITY     1.0000    1.0000    1.0000         8
    ORGAN     0.4500    0.6923    0.5455        13
LUNGFIELD     1.0000    0.5000    0.6667         6
    SHAPE     0.5714    0.5714    0.5714         7
   NATURE     1.0000    1.0000    1.0000         6
 BOUNDARY     1.0000    0.6250    0.7692         8
   MARGIN     0.8333    0.8333    0.8333         6
  TEXTURE     1.0000    0.8571    0.9231         7

micro avg     0.7436    0.7987    0.7702       621
macro avg     0.7610    0.7987    0.7760       621

roberta

           precision    recall  f1-score   support

  ANATOMY     0.8624    0.8545    0.8584       220
  DENSITY     0.8000    1.0000    0.8889         8
     SIGN     0.7347    0.7619    0.7481       189
 QUANTITY     0.8977    0.9518    0.9240        83
  DISEASE     0.5690    0.7674    0.6535        43
 DIAMETER     1.0000    1.0000    1.0000        16
TREATMENT     0.3333    0.5556    0.4167         9
 BOUNDARY     1.0000    0.6250    0.7692         8
LUNGFIELD     1.0000    0.6667    0.8000         6
   MARGIN     0.8333    0.8333    0.8333         6
  TEXTURE     1.0000    0.8571    0.9231         7
    SHAPE     0.5714    0.5714    0.5714         7
   NATURE     1.0000    1.0000    1.0000         6
    ORGAN     0.6250    0.7692    0.6897        13

micro avg     0.7880    0.8261    0.8066       621
macro avg     0.8005    0.8261    0.8104       621

macBERT

           precision    recall  f1-score   support

  ANATOMY     0.8773    0.8773    0.8773       220
     SIGN     0.6538    0.7196    0.6851       189
  DISEASE     0.5893    0.7674    0.6667        43
 QUANTITY     0.9070    0.9398    0.9231        83
    ORGAN     0.5882    0.7692    0.6667        13
  TEXTURE     1.0000    0.8571    0.9231         7
 DIAMETER     1.0000    1.0000    1.0000        16
TREATMENT     0.3750    0.6667    0.4800         9
LUNGFIELD     1.0000    0.5000    0.6667         6
    SHAPE     0.4286    0.4286    0.4286         7
   NATURE     1.0000    1.0000    1.0000         6
  DENSITY     1.0000    1.0000    1.0000         8
 BOUNDARY     1.0000    0.6250    0.7692         8
   MARGIN     0.8333    0.8333    0.8333         6

micro avg     0.7697    0.8180    0.7931       621
macro avg     0.7846    0.8180    0.7977       621

BERT_wwm

           precision    recall  f1-score   support

  DISEASE     0.5667    0.7907    0.6602        43
  ANATOMY     0.8676    0.8636    0.8656       220
 QUANTITY     0.8966    0.9398    0.9176        83
     SIGN     0.7358    0.7513    0.7435       189
LUNGFIELD     1.0000    0.6667    0.8000         6
TREATMENT     0.3571    0.5556    0.4348         9
 DIAMETER     0.9375    0.9375    0.9375        16
 BOUNDARY     1.0000    0.6250    0.7692         8
  TEXTURE     1.0000    0.8571    0.9231         7
   MARGIN     0.8333    0.8333    0.8333         6
    ORGAN     0.5882    0.7692    0.6667        13
  DENSITY     1.0000    1.0000    1.0000         8
   NATURE     1.0000    1.0000    1.0000         6
    SHAPE     0.5000    0.5714    0.5333         7

micro avg     0.7889    0.8245    0.8063       621
macro avg     0.8020    0.8245    0.8104       621

Predict

运行predict/predict_bio.py

Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Rishikesh (ऋषिकेश) 33 Sep 22, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022