中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

Overview

English | 中文说明

CBLUE

AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For further accelerating AI research in the biomedical field, we present Chinese Biomedical Language Understanding Evaluation (CBLUE), including datasets collected from real-world biomedical scenarios, baseline models, and an online platform for model evaluation, comparison and analysis.

CBLUE Benchmark

We evaluate the current 11 Chinese pre-trained models on the eight biomedical language understanding tasks and report the baselines of these tasks.

Model CMedEE CMedIE CDN CTC STS QIC QTR QQR Avg.
BERT-base 62.1 54.0 55.4 69.2 83.0 84.3 60.0 84.7 69.0
BERT-wwm-ext-base 61.7 54.0 55.4 70.1 83.9 84.5 60.9 84.4 69.4
ALBERT-tiny 50.5 35.9 50.2 61.0 79.7 75.8 55.5 79.8 61.1
ALBERT-xxlarge 61.8 47.6 37.5 66.9 84.8 84.8 62.2 83.1 66.1
RoBERTa-large 62.1 54.4 56.5 70.9 84.7 84.2 60.9 82.9 69.6
RoBERTa-wwm-ext-base 62.4 53.7 56.4 69.4 83.7 85.5 60.3 82.7 69.3
RoBERTa-wwm-ext-large 61.8 55.9 55.7 69.0 85.2 85.3 62.8 84.4 70.0
PCL-MedBERT 60.6 49.1 55.8 67.8 83.8 84.3 59.3 82.5 67.9
ZEN 61.0 50.1 57.8 68.6 83.5 83.2 60.3 83.0 68.4
MacBERT-base 60.7 53.2 57.7 67.7 84.4 84.9 59.7 84.0 69.0
MacBERT-large 62.4 51.6 59.3 68.6 85.6 82.7 62.9 83.5 69.6
Human 67.0 66.0 65.0 78.0 93.0 88.0 71.0 89.0 77.1

Baseline of tasks

We present the baseline models on the biomedical tasks and release corresponding codes for a quick start.

Requirements

python3 / pytorch 1.7 / transformers 4.5.1 / jieba / gensim / sklearn

Data preparation

Download dataset

The whole zip package includes the datasets of 8 biomedical NLU tasks (more detail in the following section). Every task includes the following files:

├── {Task}
|  └── {Task}_train.json
|  └── {Task}_test.json
|  └── {Task}_dev.json
|  └── example_gold.json
|  └── example_pred.json
|  └── README.md

Notice: a few tasks have additional files, e.g. it includes 'category.xlsx' file in the CHIP-CTC task.

You can download Chinese pre-trained models according to your need (download URLs are provided above). With Huggingface-Transformers , the models above could be easily accessed and loaded.

The reference directory:

├── CBLUE         
|  └── baselines
|     └── run_classifier.py
|     └── ...
|  └── examples
|     └── run_qqr.sh
|     └── ...
|  └── cblue
|  └── CBLUEDatasets
|     └── KUAKE-QQR
|     └── ...
|  └── data
|     └── output
|     └── model_data
|        └── bert-base
|        └── ...
|     └── result_output
|        └── KUAKE-QQR_test.json
|        └── ...

Running examples

The shell files of training and evaluation for every task are provided in examples/ , and could directly run.

Also, you can utilize the running codes in baselines/ , and write your shell files according to your need:

  • baselines/run_classifer.py: support {sts, qqr, qtr, qic, ctc, ee} tasks;
  • baselines/run_cdn.py: support {cdn} task;
  • baselines/run_ie.py: support {ie} task.

Training models

Running shell files: bash examples/run_{task}.sh, and the contents of shell files are as follow:

DATA_DIR="CBLUEDatasets"

TASK_NAME="qqr"
MODEL_TYPE="bert"
MODEL_DIR="data/model_data"
MODEL_NAME="chinese-bert-wwm"
OUTPUT_DIR="data/output"
RESULT_OUTPUT_DIR="data/result_output"

MAX_LENGTH=128

python baselines/run_classifier.py \
    --data_dir=${DATA_DIR} \
    --model_type=${MODEL_TYPE} \
    --model_dir=${MODEL_DIR} \
    --model_name=${MODEL_NAME} \
    --task_name=${TASK_NAME} \
    --output_dir=${OUTPUT_DIR} \
    --result_output_dir=${RESULT_OUTPUT_DIR} \
    --do_train \
    --max_length=${MAX_LENGTH} \
    --train_batch_size=16 \
    --eval_batch_size=16 \
    --learning_rate=3e-5 \
    --epochs=3 \
    --warmup_proportion=0.1 \
    --earlystop_patience=3 \
    --logging_steps=250 \
    --save_steps=250 \
    --seed=2021

Notice: the best checkpoint is saved in OUTPUT_DIR/MODEL_NAME/.

  • MODEL_TYPE: support {bert, roberta, albert, zen} model types;
  • MODEL_NAME: support {bert-base, bert-wwm-ext, albert-tiny, albert-xxlarge, zen, pcl-medbert, roberta-large, roberta-wwm-ext-base, roberta-wwm-ext-large, macbert-base, macbert-large} Chinese pre-trained models.

The MODEL_TYPE-MODEL_NAME mappings are listed below.

MODEL_TYPE MODEL_NAME
bert bert-base, bert-wwm-ext, pcl-medbert, macbert-base, macbert-large
roberta roberta-large, roberta-wwm-ext-base, roberta-wwm-ext-large
albert albert-tiny, albert-xxlarge
zen zen

Inference & generation of results

Running shell files: base examples/run_{task}.sh predict, and the contents of shell files are as follows:

DATA_DIR="CBLUEDatasets"

TASK_NAME="qqr"
MODEL_TYPE="bert"
MODEL_DIR="data/model_data"
MODEL_NAME="chinese-bert-wwm"
OUTPUT_DIR="data/output"
RESULT_OUTPUT_DIR="data/result_output"

MAX_LENGTH=128

python baselines/run_classifier.py \
    --data_dir=${DATA_DIR} \
    --model_type=${MODEL_TYPE} \
    --model_name=${MODEL_NAME} \
    --model_dir=${MODEL_DIR} \
    --task_name=${TASK_NAME} \
    --output_dir=${OUTPUT_DIR} \
    --result_output_dir=${RESULT_OUTPUT_DIR} \
    --do_predict \
    --max_length=${MAX_LENGTH} \
    --eval_batch_size=16 \
    --seed=2021

Notice: the result of prediction {TASK_NAME}_test.json will be generated in RESULT_OUTPUT_DIR .

Submit results

Compressing RESULT_OUTPUT_DIR as .zip file and submitting the file, you will get the score of evaluation on these biomedical NLU tasks, and your ranking!

Submit your results!

submit

Introduction of tasks

For promoting the development and the application of language model in the biomedical field, we collect data from real-world biomedical scenarios and release the eight biomedical NLU (natural language understanding) tasks, including information extraction from the medical text (named entity recognition, relation extraction), normalization of the medical term, medical text classification, medical sentence similarity estimation and medical QA.

Dataset Task Train Dev Test Evaluation Metrics
CMeEE NER 15,000 5,000 3,000 Micro F1
CMeIE Relation Extraction 14,339 3,585 4,482 Micro F1
CHIP-CDN Diagnosis Normalization 6,000 2,000 10,192 Micro F1
CHIP-STS Sentence Similarity 16,000 4,000 10,000 Macro F1
CHIP-CTC Sentence Classification 22,962 7,682 10,000 Macro F1
KUAKE-QIC Sentence Classification 6,931 1,955 1,944 Accuracy
KUAKE-QTR NLI 24,174 2,913 5,465 Accuracy
KUAKE-QQR NLI 15,000 1,600 1,596 Accuracy

CMeEE

The evaluation task is the recognition of the named entity on the medical text. Given schema data and medical sentences, models are expected to extract entity about clinical information and classify these entities exactly.

example { "text": "呼吸肌麻痹和呼吸中枢受累患者因呼吸不畅可并发肺炎、肺不张等。", "entities": [ { "start_idx": 0, "end_idx": 2, "type": "bod", "entity: "呼吸肌" }, { "start_idx": 0, "end_idx": 4, "type": "sym", "entity: "呼吸肌麻痹" }, { "start_idx": 6, "end_idx": 9, "type": "bod", "entity: "呼吸中枢" }, { "start_idx": 6, "end_idx": 11, "type": "sym", "entity: "呼吸中枢受累" }, { "start_idx": 15, "end_idx": 18, "type": "sym", "entity: "呼吸不畅" }, { "start_idx": 22, "end_idx": 23, "type": "dis", "entity: "肺炎" }, { "start_idx": 25, "end_idx": 27, "type": "dis", "entity: "肺不张" } ] }

CMeIE

The evaluation task is the extraction of entity relation on the medical text. Given schema and medical sentences, models are expected to automatically extract triples=[(S1, P1, O1), (S2, P2, O2)…] satisfying the constraint of schema. The schema defines the category of the predicate and corresponding subject and object, e.g.

(“subject_type”:“疾病”,“predicate”: “药物治疗”,“object_type”:“药物”) (“subject_type”:“疾病”,“predicate”: “实验室检查”,“object_type”:“检查”)

example { "text": "慢性胰腺炎@ ###低剂量放射 自1964年起,有几项病例系列报道称外照射 (5-50Gy) 可以有效改善慢性胰腺炎患者的疼痛症状。慢性胰腺炎@从概念上讲,外照射可以起到抗炎和止痛作用,并且已经开始被用于非肿瘤性疼痛的治疗。", "spo_list": [ { "Combined": true, "predicate": "放射治疗", "subject": "慢性胰腺炎", "subject_type": "疾病", "object": { "@value": "外照射" }, "object_type": { "@value": "其他治疗" } }, { "Combined": true, "predicate": "放射治疗", "subject": "非肿瘤性疼痛", "subject_type": "疾病", "object": { "@value": "外照射" }, "object_type": { "@value": "其他治疗" } } } ] }

CHIP-CDN

The evaluation task is the normalization of the diagnosis entity from the Chinese medical record. Given a diagnosis entity, models are expected to return corresponding standard terms.

example [ { "text": "左膝退变伴游离体", "normalized_result": "膝骨关节病##膝关节游离体" }, { "text": "糖尿病反复低血糖;骨质疏松;高血压冠心病不稳定心绞痛", "normalized_result": "糖尿病性低血糖症##骨质疏松##高血压##冠状动脉粥样硬化性心脏病##不稳定性心绞痛" }, { "text": "右乳腺癌IV期", "normalized_result": "乳腺恶性肿瘤##癌" } ]

CHIP-CTC

In this evaluation task, given 44 semantic categories of screening standard (more detail in category.xlsx) and some description about Chinese clinical screening standard, models are expected to return every description's specific category.

example [ { "id": "s1", "label": "Multiple", "text": " 7.凝血功能异常(INR>1.5 或凝血酶原时间(PT)>ULN+4 秒或 APTT >1.5 ULN),具有出血倾向或正在接受溶栓或抗凝治疗;" }, { "id": "s2", "label": "Addictive Behavior", "text": " (2)重度吸烟(大于10支/天)及酗酒患者" }, { "id": "s3", "label": "Therapy or Surgery", "text": " 13. 有器官移植病史或正等待器官移植的患者;" } ]

CHIP-STS

In this evaluation task, given pairs of sentences involving five different diseases, models are expected to judge the semantic similarity of the pair of sentences.

example [ { "id": "1", "text1": "糖尿病能吃减肥药吗?能治愈吗?", "text2": "糖尿病为什么不能吃减肥药", "label": "1", "category": "diabetes" }, { "id": "2", "text1": "有糖尿病和前列腺怎么保健怎样治疗", "text2": "患有糖尿病和前列腺怎么办?", "label": "1", "category": "diabetes" }, { "id": "3", "text1": "我也是乙肝携带患者,可以办健康证吗在", "text2": "乙肝五项化验单怎么看呢", "label": "0", "category": "hepatitis" } ]

KUAKE-QIC

In this evaluation task, given a medical query, models are expected to classify the intention of patients. These medical queries have 11 categories: diagnosis, cause, method, advice, metric explain, disease expression, result, attention, effect, price, other.

example [ { "id": "s1", "query": "心肌缺血如何治疗与调养呢?", "label": "治疗方案" }, { "id": "s2", "query": "19号来的月经,25号服用了紧急避孕药本月5号,怎么办?", "label": "治疗方案" }, { "id": "s3", "query": "什么叫痔核脱出?什么叫外痔?", "label": "疾病表述" } ]

KUAKE-QTR

In this evaluation task, given a pair of query and title, models are expected to predict whether the topic of the pair query and title is consistent and the extent of their consistency.

example [ { "id": "s1", "query": "咳嗽到腹肌疼", "title": "感冒咳嗽引起的腹肌疼痛,是怎么回事?", "label": "2" }, { "id": "s2", "query": "烂牙神经的药对怀孕胚胎", "title": "怀孕两个月治疗牙齿烂牙神经用了含砷失活剂 怀孕两个月治疗...", "label": "1" }, { "id": "s3", "query": "怀孕可以空腹吃葡萄吗", "title": "怀孕四个月,今早空腹吃了葡萄,然后肚子就一直胀胀的...", "label": "1" } ]

KUAKE-QQR

In this evaluation task, given a pair of queries, models are expected to predict the extent of similarity between them.

example [ { "id": "s1", "query": "小孩子打呼噜什么原因", "title": "孩子打呼噜是什么原因", "label": "2" }, { "id": "s2", "query": "小孩子打呼噜什么原因", "title": "宝宝打呼噜是什么原因", "label": "0" }, { "id": "s3", "query": "小孩子打呼噜什么原因", "title": "小儿打呼噜是什么原因引起的", "label": "2" } ]

Quick start

The modules of Data Processor, Model trainer could be found in cblue/. You can easily construct your code, train and evaluate your own models and methods. The corresponding Data Processor, Dataset, Trainer of eight tasks are listed below:

Task Data Processor (cblue.data) Dataset (cblue.data) Trainer (cblue.trainer)
CMeEE EEDataProcessor EEDataset EETrainer
CMeIE ERDataProcessor/REDataProcessor ERDataset/REDataset ERTrainer/RETrainer
CHIP-CDN CDNDataProcessor CDNDataset CDNForCLSTrainer/CDNForNUMTrainer
CHIP-CTC CTCDataProcessor CTCDataset CTCTrainer
CHIP-STS STSDataProcessor STSDataset STSTrainer
KUAKE-QIC QICDataProcessor QICDataset QICTrainer
KUAKE-QQR QQRDataProcessor QQRDataset QQRTrainer
KUAKE-QTR QTRDataProcessor QTRDataset QTRTrainer

Example for CMeEE

from cblue.data import EEDataProcessor, EEDataset
from cblue.trainer import EETrainer
from cblue.metrics import ee_metric, ee_commit_prediction

# get samples
data_processor = EEDataProcessor(root=...)
train_samples = data_processor.get_train_sample()
eval_samples = data_processor.get_dev_sample()
test_samples = data_processor,get_test_sample()

# 'torch.Dataset'
train_dataset = EEDataset(train_sample, tokenizer=..., mode='train', max_length=...)

# training model
trainer = EETrainer(...)
trainer.train(...)

# predicton and generation of result
test_dataset = EEDataset(test_sample, tokenizer=..., mode='test', max_length=...)
trainer.predict(test_dataset)

Training setup

We list the hyper-parameters of every tasks during the baseline experiments.

Common hyper-parameters

Param Value
warmup_proportion 0.1
weight_decay 0.01
adam_epsilon 1e-8
max_grad_norm 1.0

CMeEE

Hyper-parameters for the training of pre-trained models with a token classification head on top for named entity recognition of the CMeEE task.

Model epoch batch_size max_length learning_rate
bert-base 5 32 128 4e-5
bert-wwm-ext 5 32 128 4e-5
roberta-wwm-ext 5 32 128 4e-5
roberta-wwm-ext-large 5 12 65 2e-5
roberta-large 5 12 65 2e-5
albert-tiny 10 32 128 5e-5
albert-xxlarge 5 12 65 1e-5
PCL-MedBERT 5 32 128 4e-5

CMeIE-ER

Hyper-parameters for the training of pre-trained models with a token-level classifier for subject and object recognition of the CMeIE task.

Model epoch batch_size max_length learning_rate
bert-base 7 32 128 5e-5
bert-wwm-ext 7 32 128 5e-5
roberta-wwm-ext 7 32 128 4e-5
roberta-wwm-ext-large 7 16 80 4e-5
roberta-large 7 16 80 2e-5
albert-tiny 10 32 128 4e-5
albert-xxlarge 7 16 80 1e-5
PCL-MedBERT 7 32 128 4e-5

CMeIE-RE

Hyper-parameters for the training of pre-trained models with a classifier for the entity pairs relation prediction of the CMeIE task.

Model epoch batch_size max_length learning_rate
bert-base 8 32 128 5e-5
bert-wwm-ext 8 32 128 5e-5
roberta-wwm-ext 8 32 128 4e-5
roberta-wwm-ext-large 8 16 80 4e-5
roberta-large 8 16 80 2e-5
albert-tiny 10 32 128 4e-5
albert-xxlarge 8 16 80 1e-5
PCL-MedBERT 8 32 128 4e-5

CHIP-CTC

Hyper-parameters for the training of pre-trained models with a sequence classification head on top for screening criteria classification of the CHIP-CTC task.

Model epoch batch_size max_length learning_rate
bert-base 5 32 128 5e-5
bert-wwm-ext 5 32 128 5e-5
roberta-wwm-ext 5 32 128 4e-5
roberta-wwm-ext-large 5 20 50 3e-5
roberta-large 5 20 50 4e-5
albert-tiny 10 32 128 4e-5
albert-xxlarge 5 20 50 1e-5
PCL-MedBERT 5 32 128 4e-5

CHIP-CDN-cls

Hyper-parameters for the CHIP-CDN task. We model the CHIP-CDN task with two stages: recall stage and ranking stage. num_negative_sample sets the number of negative samples sampled for the training ranking model during the ranking stage. recall_k sets the number of candidates recalled in the recall stage.

Param Value
recall_k 200
num_negative_sample 10

Hyper-parameters for the training of pre-trained models with a sequence classifier for the ranking model of the CHIP-CDN task. We encode the pairs of the original term and standard phrase from candidates recalled during the recall stage and then pass the pooled output to the classifier, which predicts the relevance between the original term and standard phrase.

Model epoch batch_size max_length learning_rate
bert-base 3 32 128 4e-5
bert-wwm-ext 3 32 128 5e-5
roberta-wwm-ext 3 32 128 4e-5
roberta-wwm-ext-large 3 32 40 4e-5
roberta-large 3 32 40 4e-5
albert-tiny 3 32 128 4e-5
albert-xxlarge 3 32 40 1e-5
PCL-MedBERT 3 32 128 4e-5

CHIP-CDN-num

Hyper-parameters for the training of pre-trained models with a sequence classifier for the prediction of the number of standard phrases corresponding to the original term in the CHIP-CDN task. We take the prediction results of the model as the number we choose from the most relevant standard phrases, combining with the prediction of the ranking model.

Model epoch batch_size max_length learning_rate
bert-base 20 32 128 4e-5
bert-wwm-ext 20 32 128 5e-5
roberta-wwm-ext 20 32 128 4e-5
roberta-wwm-ext-large 20 12 40 4e-5
roberta-large 20 12 40 4e-5
albert-tiny 20 32 128 4e-5
albert-xxlarge 20 12 40 1e-5
PCL-MedBERT 20 32 128 4e-5

CHIP-STS

Hyper-parameters for the training of pre-trained models with a sequence classifier for sentence similarity predication of the CHIP-STS task.

Model epoch batch_size max_length learning_rate
bert-base 3 16 40 3e-5
bert-wwm-ext 3 16 40 3e-5
roberta-wwm-ext 3 16 40 4e-5
roberta-wwm-ext-large 3 16 40 4e-5
roberta-large 3 16 40 2e-5
albert-tiny 3 16 40 5e-5
albert-xxlarge 3 16 40 1e-5
PCL-MedBERT 3 16 40 2e-5

KUAKE-QIC

Hyper-parameters for the training of pre-trained models with a sequence classifier for query intention prediction of the KUAKE-QIC task.

Model epoch batch_size max_length learning_rate
bert-base 3 16 50 2e-5
bert-wwm-ext 3 16 50 2e-5
roberta-wwm-ext 3 16 50 2e-5
roberta-wwm-ext-large 3 16 50 2e-5
roberta-large 3 16 50 3e-5
albert-tiny 3 16 50 5e-5
albert-xxlarge 3 16 50 1e-5
PCL-MedBERT 3 16 50 2e-5

KUAKE-QTR

Hyper-parameters for the training of pre-trained models with a sequence classifier for query-title pairs relevance prediction of the KUAKE-QTR task.

Model epoch batch_size max_length learning_rate
bert-base 3 16 40 4e-5
bert-wwm-ext 3 16 40 2e-5
roberta-wwm-ext 3 16 40 3e-5
roberta-wwm-ext-large 3 16 40 2e-5
roberta-large 3 16 40 2e-5
albert-tiny 3 16 40 5e-5
albert-xxlarge 3 16 40 1e-5
PCL-MedBERT 3 16 40 3e-5

KUAKE-QQR

Hyper-parameters for the training of pre-trained models with a sequence classifier for query-query pairs relevance prediction of the KUAKE-QQR task.

Model epoch batch_size max_length learning_rate
bert-base 3 16 30 3e-5
bert-wwm-ext 3 16 30 3e-5
roberta-wwm-ext 3 16 30 3e-5
roberta-wwm-ext-large 3 16 30 3e-5
roberta-large 3 16 30 2e-5
albert-tiny 3 16 30 5e-5
albert-xxlarge 3 16 30 3e-5
PCL-MedBERT 3 16 30 2e-5
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023
Multiple implementations for abstractive text summurization , using google colab

Text Summarization models if you are able to endorse me on Arxiv, i would be more than glad https://arxiv.org/auth/endorse?x=FRBB89 thanks This repo i

463 Dec 26, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022