[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

Overview

FiGNN for CTR prediction

The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction, arxiv.

The input sparse multi-field feature vector is first mapped into sparse one-hot embedding vectors and then embedded to dense field embedding vectors via the embedding layer and the multi-head self-attention layer. These field embedding vectors are then represented as a feature graph, where each node corresponds to a feature field and different feature fields can interact through edges. The task of modeling interaction can be thus converted to modeling node interactions on the feature graph. Therefore, the feature graph is feed into our proposed Fi-GNN to model node interactions. An attention scoring layer is applied on the output of Fi-GNN to estimate the click- through rate.

Next, we introduce how to run FiGNN on four benchmark data sets.

Requirements:

  • Tensorflow 1.5.0
  • Python 3.6
  • CUDA 9.0+ (For GPU)

Usage

Our code is based on Weiping Song and Chence Shi's AutoInt.

Input Format

The required input data is in the following format:

  • train_x: matrix with shape (num_sample, num_field). train_x[s][t] is the feature value of feature field t of sample s in the dataset. The default value for categorical feature is 1.
  • train_i: matrix with shape (num_sample, num_field). train_i[s][t] is the feature index of feature field t of sample s in the dataset. The maximal value of train_i is the feature size.
  • train_y: label of each sample in the dataset.

If you want to know how to preprocess the data, please refer to data/Dataprocess/Criteo/preprocess.py

Example

There are four public real-world datasets (Avazu, Criteo, KDD12, MovieLens-1M) that you can choose. You can run the code on MovieLens-1M dataset directly in /movielens. The other three datasets are super huge, and they can not be fit into the memory as a whole. Therefore, we split the whole dataset into 10 parts and we use the first file as test set and the second file as valid set. We provide the codes for preprocessing these three datasets in data/Dataprocess. If you want to reuse these codes, you should first run preprocess.py to generate train_x.txt, train_i.txt, train_y.txt as described in Input Format. Then you should run data/Dataprocesss/Kfold_split/StratifiedKfold.py to split the whole dataset into ten folds. Finally you can run scale.py to scale the numerical value(optional).

To help test the correctness of the code and familarize yourself with the code, we upload the first 10000 samples of Criteo dataset in train_examples.txt. And we provide the scripts for preprocessing and training.(Please refer to data/sample_preprocess.sh and run_criteo.sh, you may need to modify the path in config.py and run_criteo.sh).

After you run the data/sample_preprocess.sh, you should get a folder named Criteo which contains part*, feature_size.npy, fold_index.npy, train_*.txt. feature_size.npy contains the number of total features which will be used to initialize the model. train_*.txt is the whole dataset. If you use other small dataset, say MovieLens-1M, you only need to modify the function _run_ in autoint/train.py.

Here's how to run the preprocessing.

cd data
mkdir Criteo
python ./Dataprocess/Criteo/preprocess.py
python ./Dataprocess/Kfold_split/stratifiedKfold.py
python ./Dataprocess/Criteo/scale.py

Besides our proposed model FiGNN, you can also choose AutoInt model. You should specify the model type (FiGNN or AutoInt) when running the training.

Here's how to run the training.

CUDA_VISIBLE_DEVICES=0 python -m code.train \
                        --model_type FiGNN \
                        --data_path data --data Criteo \
                        --blocks 3 --heads 2 --block_shape "[64,64,64]" \
                        --is_save --has_residual \
                        --save_path ./models/Criteo/fignn_64x64x64/ \
                        --field_size 39  --run_times 1 \
                        --epoch 3 --batch_size 1024 \

You should see the output like this:

...
train logs
...
start testing!...
restored from ./models/Criteo/b3h2_64x64x64/1/
test-result = 0.8088, test-logloss = 0.4430
test_auc [0.8088305055534442]
test_log_loss [0.44297631300399626]
avg_auc 0.8088305055534442
avg_log_loss 0.44297631300399626

Citation

If you find FiGNN useful for your research, please consider citing the following paper:

@inproceedings{li2019fi,
  title={Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction},
  author={Li, Zekun and Cui, Zeyu and Wu, Shu and Zhang, Xiaoyu and Wang, Liang},
  booktitle={Proceedings of the 28th ACM International Conference on Information and Knowledge Management},
  pages={539--548},
  year={2019}
}

Contact information

You can contact Zekun Li ([email protected]), if there are questions related to the code.

Acknowledgement

This implementation is based on Weiping Song and Chence Shi's AutoInt. Thanks for their sharing and contribution.

Owner
Big Data and Multi-modal Computing Group, CRIPAC
Big Data and Multi-modal Computing Group, Center for Research on Intelligent Perception and Computing
Big Data and Multi-modal Computing Group, CRIPAC
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021