Learning from graph data using Keras

Overview

Steps to run =>

  • Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data
  • unzip the files in the folder input/cora
  • cd code
  • python eda.py
  • python word_features_only.py # for baseline model 53.28% accuracy
  • python graph_embedding.py # for model_1 73.06% accuracy
  • python graph_features_embedding.py # for model_2 76.35% accuracy

Learning from Graph data using Keras and Tensorflow

Cora Data set Citation Graph

Motivation :

There is a lot of data out there that can be represented in the form of a graph in real-world applications like in Citation Networks, Social Networks (Followers graph, Friends network, … ), Biological Networks or Telecommunications.
Using Graph extracted features can boost the performance of predictive models by relying of information flow between close nodes. However, representing graph data is not straightforward especially if we don’t intend to implement hand-crafted features.
In this post we will explore some ways to deal with generic graphs to do node classification based on graph representations learned directly from data.

Dataset :

The Cora citation network data set will serve as the base to the implementations and experiments throughout this post. Each node represents a scientific paper and edges between nodes represent a citation relation between the two papers.
Each node is represented by a set of binary features ( Bag of words ) as well as by a set of edges that link it to other nodes.
The dataset has 2708 nodes classified into one of seven classes. The network has 5429 links. Each Node is also represented by a binary word features indicating the presence of the corresponding word. Overall there is 1433 binary (Sparse) features for each node. In what follows we only use 140 samples for training and the rest for validation/test.

Problem Setting :

Problem : Assigning a class label to nodes in a graph while having few training samples.
Intuition/Hypothesis : Nodes that are close in the graph are more likely to have similar labels.
Solution : Find a way to extract features from the graph to help classify new nodes.

Proposed Approach :


Baseline Model :

Simple Baseline Model

We first experiment with the simplest model that learn to predict node classes using only the binary features and discarding all graph information.
This model is a fully-connected Neural Network that takes as input the binary features and outputs the class probabilities for each node.

Baseline model Accuracy : 53.28%

****This is the initial accuracy that we will try to improve on by adding graph based features.

Adding Graph features :

One way to automatically learn graph features by embedding each node into a vector by training a network on the auxiliary task of predicting the inverse of the shortest path length between two input nodes like detailed on the figure and code snippet below :

Learning an embedding vector for each node

The next step is to use the pre-trained node embedding as input to the classification model. We also add the an additional input which is the average binary features of the neighboring nodes using distance of learned embedding vectors.

The resulting classification network is described in the following figure :

Using pretrained embeddings to do node classification

Graph embedding classification model Accuracy : 73.06%

We can see that adding learned graph features as input to the classification model helps significantly improve the classification accuracy compared to the baseline model from **53.28% to 73.06% ** 😄 .

Improving Graph feature learning :

We can look to further improve the previous model by pushing the pre-training further and using the binary features in the node embedding network and reusing the pre-trained weights from the binary features in addition to the node embedding vector. This results in a model that relies on more useful representations of the binary features learned from the graph structure.

Improved Graph embedding classification model Accuracy : 76.35%

This additional improvement adds a few percent accuracy compared to the previous approach.

Conclusion :

In this post we saw that we can learn useful representations from graph structured data and then use these representations to improve the generalization performance of a node classification model from **53.28% to 76.35% ** 😎 .

Code to reproduce the results is available here : https://github.com/CVxTz/graph_classification

Owner
Mansar Youness
Mansar Youness
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022