The official repository for Deep Image Matting with Flexible Guidance Input

Overview

FGI-Matting

The official repository for Deep Image Matting with Flexible Guidance Input.

Paper: https://arxiv.org/abs/2110.10898

image

all

Requirements

  • easydict
  • numpy
  • opencv-python
  • Pillow
  • PyQt5
  • scikit-image
  • scipy
  • toml
  • torch>=1.5.0
  • torchvision

Models and supplementary data for DIM test set(Composition-1k) and Distinctions-646 test set

Google drive: https://drive.google.com/drive/folders/13qnlXUSKS5HfkfvzdMKAv7FvJ6YV_wPK?usp=sharing
百度网盘: https://pan.baidu.com/s/1ZYcbwyCIrL6G9t7pkCIBYw 提取码: zjtj

  • Weight_DIM.pth The model trained with Adobe matting dataset.

  • Weight_D646.pth The model trained with Distincions-646 dataset.

  • DIM_test_supp_data.zip Scribblemaps and Clickmaps for DIM test set.

  • D-646_test_supp_data.zip Scribblemaps and Clickmaps for Distinctions-646 test set.

Place Weight_DIM.pth and Weight_D646.pth in ./checkpoints.
Edit ./config/FGI_config to modify the path of the testset and choose the checkpoint name.

Test on DIM test set(Composition-1k)

Methods SAD MSE Grad Conn
Trimap test 30.19 0.0061 13.07 26.66
Scribblemap test 32.86 0.0090 14.18 29.09
Clickmap test 34.67 0.0112 15.45 30.96
No guidance test 36.36 0.0141 15.23 32.76

"checkpoint" in ./config/FGI_config.toml should be "Weight_DIM".
bash test.sh
Modify "guidancemap_phase" in ./config/FGI_config.toml to test on trimap, scribblemap, clickmap and No_guidance.
For further test, please use the code in ./DIM_evaluation_code and the predicted alpha mattes in ./alpha_pred.

Test on Distinctions-646 test set(Not appear in the paper)

Methods SAD MSE Grad Conn
Trimap test 28.90 0.0105 24.67 27.40
Scribblemap test 33.22 0.0131 26.93 31.38
Clickmap test 34.97 0.0146 27.60 33.11
No guidance test 36.83 0.0156 28.28 34.90

"checkpoint" in ./config/FGI_config.toml should be "Weight_D646".
bash test.sh
Modify "guidancemap_phase" in ./config/FGI_config.toml to test on trimap, scribblemap, clickmap and No_guidance.
For further test, please use the code in ./DIM_evaluation_code and the predicted alpha mattes in ./alpha_pred.

The QT Demo

Copy one of the pth file and rename it "Weight_qt_in_use.pth", also place it in ./checkpoints.
Run test_one_img_qt.py. Try images in ./testimg. It will use GPU if avaliable, otherwise it will use CPU.

demo

I recommend to use the one trained on DIM dataset.
Have fun :D

Acknowledgment

GCA-Matting: https://github.com/Yaoyi-Li/GCA-Matting

Owner
Hang Cheng
Hang Cheng
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
Code for the Image similarity challenge.

ISC 2021 This repository contains code for the Image Similarity Challenge 2021. Getting started The docs subdirectory has step-by-step instructions on

Facebook Research 173 Dec 12, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022