This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Overview

Deploy-yolo-fastest-tflite-on-raspberry

觉得有用的话可以顺手点个star嗷

这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。
该项目主要是为了记录在树莓派部署yolo fastest tflite的流程

(之后有时间会尝试用C++部署来提升性能)

一些问题

1. 如何运行tflite文件?

关于如何在linux端运行tflite模型的问题,官方文档中已经给的非常清楚,详见tflite.API

2. yolo-fastest的解码问题?

由于yolo fastest的输出格式和其他版本的yolo不太一样,所以其yolo输出的解码模式和其他版本yolo不同,需要引起注意。若要部署的模型不是yolo fastest tflite而是其他yolo,该项目可能不能直接适用, 但根据能力进行修改即可。

3.yolo-fastest的源码:Yolo-Fastest

现在yolo fastest的作者推出了V2版本,性能更好。该项目采用的是V1.

4.关于如何在windows上训练yolo fastest模型,详见本人另一个仓库:Yolo-Fastest-on-Windows

模型实机效果

image
该项目在树莓派3b+上可以跑到平均25帧每秒。
image

小车实机效果

image

项目内容

本项目包含两个文件夹,detect-camera-streamdetect-single-img
两个文件夹中结构相同,模型文件存在两个文件夹下的tflite/Sample_TFlite_model中,主程序写在TFLite_detection_stream.py和TFLite_detection_img.py里,yolo相关的函数写在yolo_layer.py中。

detect-camera-stream文件可以在树莓派3b+连接USB摄像头的情况下,实时的对视频流进行目标检测。
detect-single-img文件可以对tflite/下的4.jpg图片,即单独一张图片进行检测。

关于运行的命令,存放在instruction.txt之中。

如何直接运行该项目:

  1. 确保树莓派上有python3.7解释器。

  2. 安装virtualenv:

python3 -m venv tflite-env 

  3. 下载该项目所有文件。
  4. 进入tflite文件夹,进入虚拟python环境:

source tflite-env/bin/activate
bash get_pi_requirements.sh                  :若上一步提示缺少环境则执行这一行

  5. 在tflite文件夹下,运行instruction.txt中的指令:

python3 TFLite_detection_image.py
python3 TFLite_detection_stream.py

从零部署流程

  以detect-camera-stream为例。

  1. 创建虚拟python环境:

  创建一个tflite文件夹,创建虚拟环境:

cd tflite                                     :进入tflite
sudo pip3 install virtualenv                  :创建虚拟环境需要的工具
python3 -m venv tflite-env                    :创建虚拟环境,虚拟环境储存在tflite/tflite-env中
source tflite-env/bin/activate                :进入虚拟环境,每次推出terminal后都要执行此命令以进入虚拟环境

  2. 安装包和依赖:

  在进入虚拟环境后,提取出该项目中的get_pi_requirements.sh,放在tflite文件夹下:

bash get_pi_requirements.sh                   :下载包和依赖

  此时可通过以下代码来测试cv2模块是否安装好(opencv-python模块经常抽风):

python3
import cv2

  此时若没有报错则说明opencv-python安装成功,但经常出现以下错误:

ImportError: libjasper.so.1: cannot open shared object file: No such file or directory

  这个报错说明少安装了依赖,执行以下命令即可:(我是这样解决的,若解决不了请百度)

sudo apt-get install libjasper-dev

  3. 在tflite文件夹下创建Sample_TFlite_model文件夹,其中存放训练好的tflite模型。

  4. 运行模型 在tflite文件夹下,运行:

python3 TFLite_detection_stream.py

  即可看到效果

注意:若是自己的训练的模型而不是该项目里的,需要到TFLite_detection_stream.py中修改图片分辨率等参数。

由于树莓派要和小车通信,因此这里在记录一下在树莓派用AMA0实现串口通信的过程。

首先安装gedit编辑器,比vim好用一些:

sudo apt-get install gedit

然后禁用串口启动,开启串口硬件:

sudo raspi-config
interfacing options --> would you like a login shell to be accessible  over serial? --> No
                    --> would you like the serial port hardware to be enabled? --> Yes

由于蓝牙和AMA0使用的是同一个GPIO,将ttyAMA0和ttyS0的映射调换:

sudo gedit /boot/config.txt
在最后一行添加:dtoverlay=pi3-miniuart-bt
sudo reboot

因为控制台使用串口和通信串口只能存在一个,所以要禁用控制台来使用串口:

sudo systemctl stop [email protected]
sudo systemctl disable [email protected]

然后删除serial0相关:

sudo gedit /boot/cmdline.txt
删除 console=serial0,115200 ,没有就不管
sudo reboot

至此串口设置就完了,因为树莓派的python3解释器自带serial库,但我们之前创建的虚拟环境没有,所以要在虚拟环境再次安装:

sudo pip3 install pyserial
sudo pip3 install serial

可以通过以下代码来控制串口:

import serial
ser = serial.Serial('/dev/ttyAMA0',115200)      # 获取串口
if(ser.isOpen):
  ser.write(b'123')                             # 出现编码问题可以尝试加上 .encode()

通过GPIO来控制识别的开始和结束

这一部分的文件在该仓库的GPIO文件夹中可找到。

由于通过ssh连接树莓派比较复杂,且每次运行程序都需要电脑在手边,因此若能通过树莓派自身来控制程序的跑与结束,是最方便不过的了。
因此,我选择用一个按键开关来控制
image
这是一个双刀双掷开关,这里只用其中两个引脚。
  1. 写一个脚本来实现启动py文件:
  在/home/pi目录下编写charlie.sh文件:

cd /home/pi/Desktop/demo1/tflite
source tflite-env/bin/activate
python3 TFLite_detection_stream.py

  此时通过命令行输入bash /home/pi/charlie.sh即可运行py文件。
  2. 连线:
  将树莓派的3,5引脚连到开关的一段,GND连接到另一端。
  这样,在初始化时将3,5拉高。当开关按下时,3被拉低,可以此作为启动程序的标志。
  当开关被松开后,5被拉高,可以此作为退出程序的标志。
  3. 编写GPIO.py:
  首先在虚拟环境中安装RPi库:

pip3 install RPi.GP

  在/home/pi/Desktop/demo1/tflite的目录下编写GPIO.py,使当引脚3被拉低后运行charlie.sh:

import time
import RPi.GPIO as GPIO
import os

run_yolo_cmd = 'bash /home/pi/charlie.sh'

GPIO.setmode(GPIO.BOARD)
GPIO.setup(3, GPIO.IN, pull_up_down=GPIO.PUD_UP)

while(True):
    while(True):
        x = GPIO.input(3)
        if(x == 0):
            break

    print('pressed')
    time.sleep(1)
    os.system(run_yolo_cmd)
    

    while(True):
        x = GPIO.input(3)
        if (x == 1):
            break
    print('not pressed')
    time.sleep(1)

  注意,time.sleep(1)是必要的,因为按键在按下和松开时,电压是不稳定的,延时可以消抖。
  4. 修改TFLite_detection_stream.py:
  修改TFLite_detection_stream.py以使得其拥有检测到引脚5升高后自动结束运行的功能:

在TFLite_detection_stream中作如下添加:
import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BOARD)
GPIO.setup(5, GPIO.IN, pull_up_down=GPIO.PUD_UP)

在进行模型推理的大循环中添加:
x = GPIO.input(5)
if(x == 1):
    print('camera exit')
    sys.exit(0)

  5. 实现开机自动运行GPIO.py

sudo gedit /etc/rc.local
在exit 0的上一行添加:
python3 /home/pi/Desktop/demo1/tflite/GPIO.py &
(&符号使得其一直在后台运行)

至此,开机后会自动运行GPIO.py,GPIO.py会不停检测引脚3。当按下引脚3后,GPIO.py会调用charlie.py来运行TFLite_detection_stream.py。TFLite_detection_stream.py会检测引脚5,当按键松开后,TFLite_detection_stream.py会自动退出。这是一个循环。再按下会再启动......

Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022