Optimus: the first large-scale pre-trained VAE language model

Overview

Optimus: the first pre-trained Big VAE language model

This repository contains source code necessary to reproduce the results presented in the EMNLP 2020 paper Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space.

The network architecture of Optimus: encoder for representation learning and decoder for generation Sentences are organized and manipulated in a pre-trained compact and smooth latent space

For more on this project, see the Microsoft Research Blog post.

News

May 21, 2020: Releasing a demo for latent space manipulation, including sentence interpolation and analogy. Check out the website.

May 20, 2020: The latent space manipulation code is cleaned and released. See instructions at optimius_for_snli.md.

May 13, 2020: The fine-tuning code for langauge modeling is released. See instructions at optimus_finetune_language_models.md

Contents

There are four steps to use this codebase to reproduce the results in the paper.

  1. Dependencies
  2. Prepare datasets
  3. Model training
    1. Pre-training on setences in Wikipedia
    2. Languange Modeling
    3. Guided Language Generation
    4. Low-resource Language Understanding
  4. Collect and plot results

Dependencies

Pull docker from Docker Hub at: chunyl/pytorch-transformers:v2. Please see the instruction at doc/env.md

The project is organized into the following structures, with ensential files & folders visualized. output saves the models checkpoints.

├── Optimus
   └── code
       ├── examples
           ├── big_ae
               ├── modules
                   ├── vae.py
                   └── ...
               ├── run_lm_vae_pretraining_phdist_beta.py
               ├── run_lm_vae_training.py
               └── ...
	   ├── pytorch_transformers
               ├── modeling_bert.py
               ├── modeling_gpt2.py
               └── ...
       ├── scripts
           ├── scripts_docker
	   ├── scripts_local
	   ├── scripts_philly
   └── data
       └── datasets
           ├── wikipedia_json_64_filtered
               └── ...
	   ├── snli_data
           └── ...
   └── output
       ├── pretrain
       ├── LM
       └── ...       

Prepare Datasets

Please download or preparation the data via following the instructions at data/download_datasets.md.

Model Training

1. Pre-training on setences in Wikipedia

We pre-trained our models on Philly (a Microsoft internal compute cluster), the code is specialized for multi-node multi-GPU compute on this platform. The pre-training main python is run_lm_vae_pretraining_phdist_beta.py. You may need to adjust the distributed training scripts.

2. Languange Modeling

To have a fair comparison with existing VAE languange models, we consider a model with latent dimension 32. The pre-trained model is fine-tuned on four commonly datasets for one epoch. Please see the details at doc/optimus_finetune_language_models.md

3. Guided Language Generation

Latent Space Manipulation To ensure good performance, we consider a model with latent dimension 768. The pre-trained model is fine-tuned on SNLI dataset, where sentences show related patterns. Please see the details at Please see the details at doc/optimius_for_snli.md

4. Low-resource Language Understanding

Collect and Plot Results

Once the networks are trained and the results are saved, we extracted key results using Python script. The results can be plotted using the included IPython notebook plots/main_plots.ipynb. Start the IPython Notebook server:

$ cd plots
$ ipython notebook

Select the main_plots.ipynb notebook and execute the included code. Note that without modification, we have copyed our extracted results into the notebook, and script will output figures in the paper. If you've run your own training and wish to plot results, you'll have to organize your results in the same format instead.

Questions?

Please drop me (Chunyuan) a line if you have any questions.

@inproceedings{li2020_Optimus,
  title={Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space},
  author={Li, Chunyuan and Gao, Xiang and Li, Yuan and Li, Xiujun and Peng, Baolin and Zhang, Yizhe and Gao, Jianfeng},
  booktitle={EMNLP},
  year={2020}
}
Owner
Researcher @ Microsoft Research
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021