Custom implementation of Corrleation Module

Overview

PyPI

Pytorch Correlation module

this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC

This tutorial was used as a basis for implementation, as well as NVIDIA's cuda code

  • Build and Install C++ and CUDA extensions by executing python setup.py install,
  • Benchmark C++ vs. CUDA by running python benchmark.py {cpu, cuda},
  • Run gradient checks on the code by running python grad_check.py --backend {cpu, cuda}.

Requirements

This module is expected to compile for Pytorch 1.6.

Installation

this module is available on pip

pip install spatial-correlation-sampler

For a cpu-only version, you can install from source with

python setup_cpu.py install

Known Problems

This module needs compatible gcc version and CUDA to be compiled. Namely, CUDA 9.1 and below will need gcc5, while CUDA 9.2 and 10.0 will need gcc7 See this issue for more information

Usage

API has a few difference with NVIDIA's module

  • output is now a 5D tensor, which reflects the shifts horizontal and vertical.
input (B x C x H x W) -> output (B x PatchH x PatchW x oH x oW)
  • Output sizes oH and oW are no longer dependant of patch size, but only of kernel size and padding
  • Patch size patch_size is now the whole patch, and not only the radii.
  • stride1 is now stride andstride2 is dilation_patch, which behave like dilated convolutions
  • equivalent max_displacement is then dilation_patch * (patch_size - 1) / 2.
  • dilation is a new parameter, it acts the same way as dilated convolution regarding the correlation kernel
  • to get the right parameters for FlowNetC, you would have
kernel_size=1
patch_size=21,
stride=1,
padding=0,
dilation=1
dilation_patch=2

Example

import torch
from spatial_correlation_sampler import SpatialCorrelationSampler, 

device = "cuda"
batch_size = 1
channel = 1
H = 10
W = 10
dtype = torch.float32

input1 = torch.randint(1, 4, (batch_size, channel, H, W), dtype=dtype, device=device, requires_grad=True)
input2 = torch.randint_like(input1, 1, 4).requires_grad_(True)

#You can either use the function or the module. Note that the module doesn't contain any parameter tensor.

#function

out = spatial_correlation_sample(input1,
	                         input2,
                                 kernel_size=3,
                                 patch_size=1,
                                 stride=2,
                                 padding=0,
                                 dilation=2,
                                 dilation_patch=1)

#module

correlation_sampler = SpatialCorrelationSampler(
    kernel_size=3,
    patch_size=1,
    stride=2,
    padding=0,
    dilation=2,
    dilation_patch=1)
out = correlation_sampler(input1, input2)

Benchmark

  • default parameters are from benchmark.py, FlowNetC parameters are same as use in FlowNetC with a batch size of 4, described in this paper, implemented here and here.
  • Feel free to file an issue to add entries to this with your hardware !

CUDA Benchmark

  • See here for a benchmark script working with NVIDIA's code, and Pytorch.
  • Benchmark are launched with environment variable CUDA_LAUNCH_BLOCKING set to 1.
  • Only float32 is benchmarked.
  • FlowNetC correlation parameters where launched with the following command:
CUDA_LAUNCH_BLOCKING=1 python benchmark.py --scale ms -k1 --patch 21 -s1 -p0 --patch_dilation 2 -b4 --height 48 --width 64 -c256 cuda -d float

CUDA_LAUNCH_BLOCKING=1 python NV_correlation_benchmark.py --scale ms -k1 --patch 21 -s1 -p0 --patch_dilation 2 -b4 --height 48 --width 64 -c256
implementation Correlation parameters device pass min time avg time
ours default 980 GTX forward 5.745 ms 5.851 ms
ours default 980 GTX backward 77.694 ms 77.957 ms
NVIDIA default 980 GTX forward 13.779 ms 13.853 ms
NVIDIA default 980 GTX backward 73.383 ms 73.708 ms
ours FlowNetC 980 GTX forward 26.102 ms 26.179 ms
ours FlowNetC 980 GTX backward 208.091 ms 208.510 ms
NVIDIA FlowNetC 980 GTX forward 35.363 ms 35.550 ms
NVIDIA FlowNetC 980 GTX backward 283.748 ms 284.346 ms

Notes

  • The overhead of our implementation regarding kernel_size > 1 during backward needs some investigation, feel free to dive in the code to improve it !
  • The backward pass of NVIDIA is not entirely correct when stride1 > 1 and kernel_size > 1, because not everything is computed, see here.

CPU Benchmark

  • No other implementation is avalaible on CPU.
  • It is obviously not recommended to run it on CPU if you have a GPU.
Correlation parameters device pass min time avg time
default E5-2630 v3 @ 2.40GHz forward 159.616 ms 188.727 ms
default E5-2630 v3 @ 2.40GHz backward 282.641 ms 294.194 ms
FlowNetC E5-2630 v3 @ 2.40GHz forward 2.138 s 2.144 s
FlowNetC E5-2630 v3 @ 2.40GHz backward 7.006 s 7.075 s
Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Learning 3D Part Assembly from a Single Image

Learning 3D Part Assembly from a Single Image This repository contains a PyTorch implementation of the paper: Learning 3D Part Assembly from A Single

18 Dec 21, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022