PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

Overview

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

This repo presents PyTorch implementation of Multi-targe Graph Domain Adaptation framework from "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" CVPR 2021. The framework is pivoted around two key concepts: graph feature aggregation and curriculum learning (see pipeline below or project web-page).

Results

Environment

Python >= 3.6
PyTorch >= 1.8.1

To install dependencies run (line 1 for pip or line 2 for conda env):

pip install -r requirements.txt
conda install --file requirements.txt

Disclaimer. This code has been tested with cuda toolkit 10.2. Please install PyTorch as supported by your machine.

Datasets

Four datasets are supported:

To run this code, one must check if the txt file names in data/<dataset_name> are matching with the downloaded domain folders. For e.g., to run OfficeHome, the domain sub-folders should be art/, clipart/, product/ and real/ corresponding to art.txt, clipart.txt, product.txt and real.txt that can be found in the data/office-home/.

Methods

  • CDAN
  • CDAN+E

Commands

Office-31

python src/main.py \
        --method 'CDAN' \
        --encoder 'ResNet50' \
 	--dataset 'office31' \
 	--data_root [your office31 folder] \
 	--source 'dslr' \
 	--target 'webcam' 'amazon' \
 	--source_iters 200 \
 	--adapt_iters 3000 \
 	--finetune_iters 15000 \
 	--lambda_node 0.3 \
 	--output_dir 'office31-dcgct/dslr_rest/CDAN'

Office-Home

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet50' \
	--dataset 'office-home' \
	--data_root [your OfficeHome folder] \
	--source 'art' \
	--target 'clipart' 'product' 'real' \
	--source_iters 500 \
	--adapt_iters 10000 \
	--finetune_iters 15000 \
	--lambda_node 0.3 \
	--output_dir 'officeHome-dcgct/art_rest/CDAN' 

PACS

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet50' \
	--dataset 'pacs' \
	--data_root [your PACS folder] \
	--source 'photo' \
	--target 'cartoon' 'art_painting' 'sketch' \
	--source_iters 200 \
	--adapt_iters 3000 \
	--finetune_iters 15000  \
	--lambda_node 0.1 \
	--output_dir 'pacs-dcgct/photo_rest/CDAN'  

DomainNet

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet101' \
	--dataset 'domain-net' \
	--data_root [your DomainNet folder] \
	--source 'sketch' \
	--target 'clipart' 'infograph' 'painting' 'real' 'quickdraw' \
	--source_iters 5000 \
	--adapt_iters 50000 \
	--finetune_iters 15000  \
	--lambda_node 0.1 \
	--output_dir 'domainNet-dcgct/sketch_rest/CDAN'

Citation

If you find our paper and code useful for your research, please consider citing our paper.

@inproceedings{roy2021curriculum,
  title={Curriculum Graph Co-Teaching for Multi-target Domain Adaptation},
  author={Roy, Subhankar and Krivosheev, Evgeny and Zhong, Zhun and Sebe, Nicu and Ricci, Elisa},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Evgeny
Evgeny
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022