3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers

Overview

3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers (BMVC 2021)

Zai Shi*, Zhao Meng*, Yiran Xing, Yunpu Ma, Roger Wattenhofer

∗The first two authors contribute equally to this work

[BMVC (with presentation)] [Paper] [Supplementary]

image

Citation

@inproceedings{3d-retr,
  author    = {Zai Shi, Zhao Meng, Yiran Xing, Yunpu Ma, Roger Wattenhofer},
  title     = {3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers},
  booktitle = {BMVC},
  year      = {2021}
}

Create Environment

git clone [email protected]:FomalhautB/3D-RETR.git
cd 3D-RETR
conda env create -f config/environment.yaml
conda activate 3d-retr

Prepare Data

ShapeNet

Download the Rendered Images and Voxelization (32) and decompress them into $SHAPENET_IMAGE and $SHAPENET_VOXEL

Train

Here is an example of reproducing the result of the single view 3D-RETR-B on the ShapeNet dataset:

python train.py \
    --model image2voxel \
    --transformer_config config/3d-retr-b.yaml \
    --annot_path data/ShapeNet.json \
    --model_path $SHAPENET_VOX \
    --image_path $SHAPENET_IMAGES \
    --gpus 1 \
    --precision 16 \
    --deterministic \
    --train_batch_size 16 \
    --val_batch_size 16 \
    --num_workers 4 \
    --check_val_every_n_epoch 1 \
    --accumulate_grad_batches 1 \
    --view_num 1 \
    --sample_batch_num 0 \
    --loss_type dice \
Owner
Zai Shi
Computer Science, ETH Zürich
Zai Shi
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
This is an differentiable pytorch implementation of SIFT patch descriptor.

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Cong Cai 12 Dec 19, 2021
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
270 Dec 24, 2022
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

Kim Seonghyeon 433 Dec 27, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
Pytorch implementation of Distributed Proximal Policy Optimization

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 164 Jan 05, 2023
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
pip install antialiased-cnns to improve stability and accuracy

Antialiased CNNs [Project Page] [Paper] [Talk] Making Convolutional Networks Shift-Invariant Again Richard Zhang. In ICML, 2019. Quick & easy start Ru

Adobe, Inc. 1.6k Dec 28, 2022
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Quiver Team 221 Dec 22, 2022
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
Bunch of optimizer implementations in PyTorch

Bunch of optimizer implementations in PyTorch

Hyeongchan Kim 76 Jan 03, 2023
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022