SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

Overview

SymmetryNet

SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2020)

Created by Yifei Shi, Junwen Huang, Hongjia Zhang, Xin Xu, Szymon Rusinkiewicz and Kai Xu

teaser

This repository includes:

  • tools: the training scripts and evaluation scripts
    • tools/train_shapenet.py: the training script for shapenet dataset
    • tools/train_ycb.py: the training script for ycb dataset
    • tools/train_scannet.py: the training script for scannet dataset
    • tools/evaluation: the evaluation scripts
      • evaluation/eval_ref_shapenet.py: the evaluation script for reflectional symmetry on shapenet dataset
      • evaluation/eval_ref_ycb.py: the evaluation script for reflectional symmetry on ycb dataset
      • evaluation/eval_ref_scannet.py: the evaluation script for reflectional symmetry on scannet dataset
      • evaluation/eval_rot_shapenet.py: the evaluation script for rotational symmetry on shapenet dataset
      • evaluation/eval_rot_ycb.py: the evaluation script for rotational symmetry on ycb dataset
      • evaluation/eval_rot_scannet.py: the evaluation script for rotational symmetry on scannet dataset
  • lib: the core Python library for networks and loss
    • lib/loss.py: symmetrynet loss caculation for both reflectional and rotational symmetries,the loss items are listed at the end of the text
    • lib/network.py: network architecture
    • lib/tools.py: functions for the operation of rotation and reflection
    • lib/verification.py: verification of the rotational and reflectional symmetries
  • datasets: the dataloader and training/testing lists
    • datasets/shapenet/dataset.py: the training dataloader for shapnet dataset
    • datasets/shapenet/dataset_eval.py: the evaluation dataloader for shapnet dataset
      • datasets/shapenet/dataset_config/*.txt: training and testing splits for shapenet dataset, the testing splits includ holdout view/instance/category
    • datasets/ycb/dataset.py: the training dataloader for ycb dataset
    • datasets/ycb/dataset_eval.py: the evaluation dataloader for ycb dataset
      • datasets/ycb/dataset_config/*.txt: training and testing splits for shapenet dataset,the training/testing splits fallow the ycb defult settings
    • datasets/shapenet/dataset.py: the training dataloader for scannet dataset
    • datasets/shapenet/dataset_eval.py: the evaluation dataloader for scannet dataset
      • datasets/scannet/dataset_config/*.txt: training and testing splits for scannet dataset,the testing splits includ holdout view/scene

Environments

pytorch>=0.4.1 python >=3.6

Datasets

  • ShapeNet dataset

    • shapenetcore: this folder saves the models and their ground truth symmetries for each instance
    • rendered_data: this folder saves the rgbd images that we rendered for each instance, including their ground truth pose and camera intrinsic matrix, etc.
    • name_list.txt: this file saves the correspondence between the name of instances and their ID in this project(the names are too long to identify)
  • YCB dataset

    • models: this folder saves the ground truth model symmetry for each instance
    • data: this folder saves the rgbd videos and the ground truth poses and camera information
    • classes.txt: this file saves the correspondence between the name of YCB objects and their *.xyz models
    • symmetries.txt: this file saves all the ground truth symmetries for ycb object models

Training

To train the network with the default parameter on shapenet dataset, run

python tools/train_shapenet.py --dataset_root= your/folder/to/shapnet/dataset

To train the network with the default parameter on ycb dataset, run

python tools/train_ycb.py --dataset_root= your/folder/to/ycb/dataset

To train the network with the default parameter on scannet dataset, run

python tools/train_scannet.py --dataset_root= your/folder/to/scannet/dataset

Evaluation

To evaluate the model with our metric on shapenet, for reflectional symmetry, run

python tools/evaluation/eval_ref_shapenet.py

for rotational symmetry, run

python tools/evaluation/eval_rot_shapenet.py

To evaluate the model with our metric on ycb, for reflectional symmetry, run

python tools/evaluation/eval_ref_ycb.py

for rotational symmetry, run

python tools/evaluation/eval_rot_ycb.py

To evaluate the model with our metric on scannet, for reflectional symmetry, run

python tools/evaluation/eval_ref_scannet.py

for rotational symmetry, run

python tools/evaluation/eval_rot_scannet.py

Pretrained model & data download

The pretrained models and data can be found at here (dropbox) and here (baidu yunpan, password: symm).

Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
An implementation of quantum convolutional neural network with MindQuantum. Huawei, classifying MNIST dataset

关于实现的一点说明 山东大学 2020级 苏博南 www.subonan.com 文件说明 tools.py 这里面主要有两个函数: resize(a, lenb) 这其实是我找同学写的一个小算法hhh。给出一个$28\times 28$的方阵a,返回一个$lenb\times lenb$的方阵。因

ぼっけなす 2 Aug 29, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022