This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

Overview

MLOps with Vertex AI

This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The example use Keras to implement the ML model, TFX to implement the training pipeline, and Model Builder SDK to interact with Vertex AI.

MLOps lifecycle

Getting started

  1. Setup your MLOps environment on Google Cloud.

  2. Start your AI Notebook instance.

  3. Open the JupyterLab then open a new Terminal

  4. Clone the repository to your AI Notebook instance:

    git clone https://github.com/GoogleCloudPlatform/mlops-with-vertex-ai.git
    cd mlops-with-vertex-ai
    
  5. Install the required Python packages:

    pip install tfx==1.2.0 --user
    pip install -r requirements.txt
    

    NOTE: You can ignore the pip dependencies issues. These will be fixed when upgrading to subsequent TFX version.


  6. Upgrade the gcloud components:

    sudo apt-get install google-cloud-sdk
    gcloud components update
    

Dataset Management

The Chicago Taxi Trips dataset is one of public datasets hosted with BigQuery, which includes taxi trips from 2013 to the present, reported to the City of Chicago in its role as a regulatory agency. The task is to predict whether a given trip will result in a tip > 20%.

The 01-dataset-management notebook covers:

  1. Performing exploratory data analysis on the data in BigQuery.
  2. Creating Vertex AI Dataset resource using the Python SDK.
  3. Generating the schema for the raw data using TensorFlow Data Validation.

ML Development

We experiment with creating a Custom Model using 02-experimentation notebook, which covers:

  1. Preparing the data using Dataflow.
  2. Implementing a Keras classification model.
  3. Training the Keras model with Vertex AI using a pre-built container.
  4. Upload the exported model from Cloud Storage to Vertex AI.
  5. Extract and visualize experiment parameters from Vertex AI Metadata.
  6. Use Vertex AI for hyperparameter tuning.

We use Vertex TensorBoard and Vertex ML Metadata to track, visualize, and compare ML experiments.

In addition, the training steps are formalized by implementing a TFX pipeline. The 03-training-formalization notebook covers implementing and testing the pipeline components interactively.

Training Operationalization

The 04-pipeline-deployment notebook covers executing the CI/CD steps for the training pipeline deployment using Cloud Build. The CI/CD routine is defined in the pipeline-deployment.yaml file, and consists of the following steps:

  1. Clone the repository to the build environment.
  2. Run unit tests.
  3. Run a local e2e test of the TFX pipeline.
  4. Build the ML container image for pipeline steps.
  5. Compile the pipeline.
  6. Upload the pipeline to Cloud Storage.

Continuous Training

After testing, compiling, and uploading the pipeline definition to Cloud Storage, the pipeline is executed with respect to a trigger. We use Cloud Functions and Cloud Pub/Sub as a triggering mechanism. The Cloud Function listens to the Pub/Sub topic, and runs the training pipeline given a message sent to the Pub/Sub topic. The Cloud Function is implemented in src/pipeline_triggering.

The 05-continuous-training notebook covers:

  1. Creating a Cloud Pub/Sub topic.
  2. Deploying a Cloud Function.
  3. Triggering the pipeline.

The end-to-end TFX training pipeline implementation is in the src/pipelines directory, which covers the following steps:

  1. Receive hyper-parameters using hyperparam_gen custom python component.
  2. Extract data from BigQuery using BigQueryExampleGen component.
  3. Validate the raw data using StatisticsGen and ExampleValidator component.
  4. Process the data using on Dataflow Transform component.
  5. Train a custom model with Vertex AI using Trainer component.
  6. Evaluate and validate the custom model using ModelEvaluator component.
  7. Save the blessed to model registry location in Cloud Storage using Pusher component.
  8. Upload the model to Vertex AI using vertex_model_pusher custom python component.

Model Deployment

The 06-model-deployment notebook covers executing the CI/CD steps for the model deployment using Cloud Build. The CI/CD routine is defined in build/model-deployment.yaml file, and consists of the following steps:

  1. Test model interface.
  2. Create an endpoint in Vertex AI.
  3. Deploy the model to the endpoint.
  4. Test the Vertex AI endpoint.

Prediction Serving

We serve the deployed model for prediction. The 07-prediction-serving notebook covers:

  1. Use the Vertex AI endpoint for online prediction.
  2. Use the Vertex AI uploaded model for batch prediction.
  3. Run the batch prediction using Vertex Pipelines.

Model Monitoring

After a model is deployed in for prediction serving, continuous monitoring is set up to ensure that the model continue to perform as expected. The 08-model-monitoring notebook covers configuring Vertex AI Model Monitoring for skew and drift detection:

  1. Set skew and drift threshold.
  2. Create a monitoring job for all the models under and endpoint.
  3. List the monitoring jobs.
  4. List artifacts produced by monitoring job.
  5. Pause and delete the monitoring job.

Metadata Tracking

You can view the parameters and metrics logged by your experiments, as well as the artifacts and metadata stored by your Vertex Pipelines in Cloud Console.

Disclaimer

This is not an official Google product but sample code provided for an educational purpose.


Copyright 2021 Google LLC.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Google Cloud Platform
Google Cloud Platform
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Activity tragle - Google is tracking everything, we just look at it

activity_tragle Google is tracking everything, we just look at it here. You need

BERNARD Guillaume 1 Feb 15, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022