Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

Related tags

Deep LearningSSTNet
Overview

SSTNet

PWC PWC

overview Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia*. (*) Corresponding author. [arxiv]

Introduction

Instance segmentation in 3D scenes is fundamental in many applications of scene understanding. It is yet challenging due to the compound factors of data irregularity and uncertainty in the numbers of instances. State-of-the-art methods largely rely on a general pipeline that first learns point-wise features discriminative at semantic and instance levels, followed by a separate step of point grouping for proposing object instances. While promising, they have the shortcomings that (1) the second step is not supervised by the main objective of instance segmentation, and (2) their point-wise feature learning and grouping are less effective to deal with data irregularities, possibly resulting in fragmented segmentations. To address these issues, we propose in this work an end-to-end solution of Semantic Superpoint Tree Network (SSTNet) for proposing object instances from scene points. Key in SSTNet is an intermediate, semantic superpoint tree (SST), which is constructed based on the learned semantic features of superpoints, and which will be traversed and split at intermediate tree nodes for proposals of object instances. We also design in SSTNet a refinement module, termed CliqueNet, to prune superpoints that may be wrongly grouped into instance proposals.

Installation

Requirements

  • Python 3.8.5
  • Pytorch 1.7.1
  • torchvision 0.8.2
  • CUDA 11.1

then install the requirements:

pip install -r requirements.txt

SparseConv

For the SparseConv, please refer PointGroup's spconv to install.

Extension

This project is based on our Gorilla-Lab deep learning toolkit - gorilla-core and 3D toolkit gorilla-3d.

For gorilla-core, you can install it by running:

pip install gorilla-core==0.2.7.6

or building from source(recommend)

git clone https://github.com/Gorilla-Lab-SCUT/gorilla-core
cd gorilla-core
python setup.py install(develop)

For gorilla-3d, you should install it by building from source:

git clone https://github.com/Gorilla-Lab-SCUT/gorilla-3d
cd gorilla-3d
python setup.py develop

Tip: for high-version torch, the BuildExtension may fail by using ninja to build the compile system. If you meet this problem, you can change the BuildExtension in cmdclass={"build_ext": BuildExtension} as cmdclass={"build_ext": BuildExtension}.with_options(use_ninja=False)

Otherwise, this project also need other extension, we use the pointgroup_ops to realize voxelization and use the segmentator to generate superpoints for scannet scene. we use the htree to construct the Semantic Superpoint Tree and the hierarchical node-inheriting relations is realized based on the modified cluster.hierarchy.linkage function from scipy.

  • For pointgroup_ops, we modified the package from PointGroup to let its function calls get rid of the dependence on absolute paths. You can install it by running:
    conda install -c bioconda google-sparsehash 
    cd $PROJECT_ROOT$
    cd sstnet/lib/pointgroup_ops
    python setup.py develop
    Then, you can call the function like:
    import pointgroup_ops
    pointgroup_ops.voxelization
    >>> <function Voxelization.apply>
  • For htree, it can be seen as a supplement to the treelib python package, and I abstract the SST through both of them. You can install it by running:
    cd $PROJECT_ROOT$
    cd sstnet/lib/htree
    python setup.py install

    Tip: The interaction between this piece of code and treelib is a bit messy. I lack time to organize it, which may cause some difficulties for someone in understanding. I am sorry for this. At the same time, I also welcome people to improve it.

  • For cluster, it is originally a sub-module in scipy, the SST construction requires the cluster.hierarchy.linkage to be implemented. However, the origin implementation do not consider the sizes of clustering nodes (each superpoint contains different number of points). To this end, we modify this function and let it support the property mentioned above. So, for used, you can install it by running:
    cd $PROJECT_ROOT$
    cd sstnet/lib/cluster
    python setup.py install
  • For segmentator, please refer here to install. (We wrap the segmentator in ScanNet)

Data Preparation

Please refer to the README.md in data/scannetv2 to realize data preparation.

Training

CUDA_VISIBLE_DEVICES=0 python train.py --config config/default.yaml

You can start a tensorboard session by

tensorboard --logdir=./log --port=6666

Tip: For the directory of logging, please refer the implementation of function gorilla.collect_logger.

Inference and Evaluation

CUDA_VISIBLE_DEVICES=0 python test.py --config config/default.yaml --pretrain pretrain.pth --eval
  • --split is the evaluation split of dataset.
  • --save is the action to save instance segmentation results.
  • --eval is the action to evaluate the segmentation results.
  • --semantic is the action to evaluate semantic segmentation only (work on the --eval mode).
  • --log-file is to define the logging file to save evaluation result (default please to refer the gorilla.collect_logger).
  • --visual is the action to save visualization of instance segmentation. (It will be mentioned in the next partion.)

Results on ScanNet Benchmark

Rank 1st on the ScanNet benchmark benchmark

Pretrained

We provide a pretrained model trained on ScanNet(v2) dataset. [Google Drive] [Baidu Cloud] (提取码:f3az) Its performance on ScanNet(v2) validation set is 49.4/64.9/74.4 in terms of mAP/mAP50/mAP25.

Acknowledgement

This repo is built upon several repos, e.g., PointGroup, spconv and ScanNet.

Contact

If you have any questions or suggestions about this repo or paper, please feel free to contact me in issue or email ([email protected]).

TODO

  • Distributed training(not verification)
  • Batch inference
  • Multi-processing for getting superpoints

Citation

If you find this work useful in your research, please cite:

@misc{liang2021instance,
      title={Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks}, 
      author={Zhihao Liang and Zhihao Li and Songcen Xu and Mingkui Tan and Kui Jia},
      year={2021},
      eprint={2108.07478},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Research lab focusing on CV, ML, and AI
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Yggdrasil - A simplistic bot designed to streamline your server experience

Ygggdrasil A simplistic bot designed to streamline your server experience. Desig

Sntx_ 1 Dec 14, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021