AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

AttentionGAN-v2 for Unpaired Image-to-Image Translation

AttentionGAN-v2 Framework

The proposed generator learns both foreground and background attentions. It uses the foreground attention to select from the generated output for the foreground regions, while uses the background attention to maintain the background information from the input image. Please refer to our papers for more details.

Framework

Comparsion with State-of-the-Art Methods

Selfie To Anime Translation

Result

Horse to Zebra Translation

Result
Result

Zebra to Horse Translation

Result

Apple to Orange Translation

Result

Orange to Apple Translation

Result

Map to Aerial Photo Translation

Result

Aerial Photo to Map Translation

Result

Style Transfer

Result

Visualization of Learned Attention Masks

Selfie to Anime Translation

Result

Horse to Zebra Translation

Attention

Zebra to Horse Translation

Attention

Apple to Orange Translation

Attention

Orange to Apple Translation

Attention

Map to Aerial Photo Translation

Attention

Aerial Photo to Map Translation

Attention

Extended Paper | Conference Paper

AttentionGAN: Unpaired Image-to-Image Translation using Attention-Guided Generative Adversarial Networks.
Hao Tang1, Hong Liu2, Dan Xu3, Philip H.S. Torr3 and Nicu Sebe1.
1University of Trento, Italy, 2Peking University, China, 3University of Oxford, UK.
In TNNLS 2021 & IJCNN 2019 Oral.
The repository offers the official implementation of our paper in PyTorch.

Are you looking for AttentionGAN-v1 for Unpaired Image-to-Image Translation?

Paper | Code

Are you looking for AttentionGAN-v1 for Multi-Domain Image-to-Image Translation?

Paper | Code

Facial Expression-to-Expression Translation

Result Order: The Learned Attention Masks, The Learned Content Masks, Final Results

Facial Attribute Transfer

Attention Order: The Learned Attention Masks, The Learned Content Masks, Final Results

Result Order: The Learned Attention Masks, AttentionGAN, StarGAN

License

Creative Commons License
Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/AttentionGAN
cd AttentionGAN/

This code requires PyTorch 0.4.1+ and python 3.6.9+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need an NVIDIA Tesla V100 with 16G memory.

Dataset Preparation

Download the datasets using the following script. Please cite their paper if you use the data. Try twice if it fails the first time!

sh ./datasets/download_cyclegan_dataset.sh dataset_name

The selfie2anime dataset can be download here.

AttentionGAN Training/Testing

  • Download a dataset using the previous script (e.g., horse2zebra).
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.
  • Train a model:
sh ./scripts/train_attentiongan.sh
  • To see more intermediate results, check out ./checkpoints/horse2zebra_attentiongan/web/index.html.
  • How to continue train? Append --continue_train --epoch_count xxx on the command line.
  • Test the model:
sh ./scripts/test_attentiongan.sh
  • The test results will be saved to a html file here: ./results/horse2zebra_attentiongan/latest_test/index.html.

Generating Images Using Pretrained Model

  • You need download a pretrained model (e.g., horse2zebra) with the following script:
sh ./scripts/download_attentiongan_model.sh horse2zebra
  • The pretrained model is saved at ./checkpoints/{name}_pretrained/latest_net_G.pth.
  • Then generate the result using
python test.py --dataroot ./datasets/horse2zebra --name horse2zebra_pretrained --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest --saveDisk

The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory. Note that if you want to save the intermediate results and have enough disk space, remove --saveDisk on the command line.

  • For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model.

Image Translation with Geometric Changes Between Source and Target Domains

For instance, if you want to run experiments of Selfie to Anime Translation. Usage: replace attention_gan_model.py and networks with the ones in the AttentionGAN-geo folder.

Test the Pretrained Model

Download data and pretrained model according above instructions.

python test.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_pretrained --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest

Train a New Model

python train.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_attentiongan --model attention_gan --dataset_mode unaligned --pool_size 50 --no_dropout --norm instance --lambda_A 10 --lambda_B 10 --lambda_identity 0.5 --load_size 286 --crop_size 256 --batch_size 4 --niter 100 --niter_decay 100 --gpu_ids 0 --display_id 0 --display_freq 100 --print_freq 100

Test the Trained Model

python test.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_attentiongan --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest

Evaluation Code

  • FID: Official Implementation
  • KID or Here: Suggested by UGATIT. Install Steps: conda create -n python36 pyhton=3.6 anaconda and pip install --ignore-installed --upgrade tensorflow==1.13.1. If you encounter the issue AttributeError: module 'scipy.misc' has no attribute 'imread', please do pip install scipy==1.1.0.

Citation

If you use this code for your research, please cite our papers.

@article{tang2021attentiongan,
  title={AttentionGAN: Unpaired Image-to-Image Translation using Attention-Guided Generative Adversarial Networks},
  author={Tang, Hao and Liu, Hong and Xu, Dan and Torr, Philip HS and Sebe, Nicu},
  journal={IEEE Transactions on Neural Networks and Learning Systems (TNNLS)},
  year={2021} 
}

@inproceedings{tang2019attention,
  title={Attention-Guided Generative Adversarial Networks for Unsupervised Image-to-Image Translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Yan, Yan},
  booktitle={International Joint Conference on Neural Networks (IJCNN)},
  year={2019}
}

Acknowledgments

This source code is inspired by CycleGAN, GestureGAN, and SelectionGAN.

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


Figure out what you like. Try to become the best in the world of it.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022