SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

Related tags

Text Data & NLPSAVI2I
Overview

License CC BY-NC-SA 4.0 Python 3.6

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

[Paper] [Project Website]

Pytorch implementation for SAVI2I. We propose a simple yet effective signed attribute vector (SAV) that facilitates continuous translation on diverse mapping paths across multiple domains.
More video results please see Our Webpage
Contact: Qi Mao ([email protected])

Paper

Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors
Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Siwei Ma, and Ming-Hsuan Yang
In arXiv 2020

Citation

If you find this work useful for your research, please cite our paper:

    @article{mao2020continuous,
      author       = "Mao, Qi and Lee, Hsin-Ying and Tseng, Hung-Yu and Huang, Jia-Bin and Ma, Siwei and Yang, Ming-Hsuan",
      title        = "Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors",
      journal    = "arXiv preprint 2011.01215",
      year         = "2020"
    }

Quick Start

Prerequisites

  • Linux or Windows
  • Python 3+
  • Suggest to use two P100 16GB GPUs or One V100 32GB GPU.

Install

  • Clone this repo:
git clone https://github.com/HelenMao/SAVI2I.git
cd SAVI2I
  • This code requires Pytorch 0.4.0+ and Python 3+. Please install dependencies by
conda create -n SAVI2I python=3.6
source activate SAVI2I
pip install -r requirements.txt 

Training Datasets

Download datasets for each task into the dataset folder

./datasets
  • Style translation: Yosemite (summer <-> winter) and Photo2Artwork (Photo, Monet, Van Gogh and Ukiyo-e)
  • You can follow the instructions of CycleGAN datasets to download Yosemite and Photo2artwork datasets.
  • Shape-variation translation: CelebA-HQ (Male <-> Female) and AFHQ (Cat, Dog and WildLife)
  • We split CelebA-HQ into male and female domains according to the annotated label and fine-tune the images manaully.
  • You can follow the instructions of StarGAN-v2 datasets to download CelebA-HQ and AFHQ datasets.

Training

Notes

For low-level style translation tasks, you suggest to set --type=1 to use corresponding network architectures.
For shape-variation translation tasks, you suggest to set --type=0 to use corresponding network architectures.

  • Yosemite
python train.py --dataroot ./datasets/Yosemite/ --phase train --type 1 --name Yosemite --n_ep 700 --n_ep_decay 500 --lambda_r1 10 --lambda_mmd 1 --num_domains 2
  • Photo2artwork
python train.py --dataroot ./datasets/Photo2artwork/ --phase train --type 1 --name Photo2artwork --n_ep 100 --n_ep_decay 0 --lambda_r1 10 --lambda_mmd 1 --num_domains 4
  • CelebAHQ
python train.py --dataroot ./datasets/CelebAHQ/ --phase train --type 0 --name CelebAHQ --n_ep 30 --n_ep_decay 0 --lambda_r1 1 --lambda_mmd 1 --num_domains 2
  • AFHQ
python train.py --dataroot ./datasets/AFHQ/ --phase train --type 0 --name AFHQ --n_ep 100 --n_ep_decay 0 --lambda_r1 1 --lambda_mmd 10 --num_domains 3

Pre-trained Models

Download and save them into

./models

or download the pre-trained models with the following script.

bash ./download_models.sh

Testing

Reference-guided

python test_reference_save.py --dataroot ./datasets/CelebAHQ --resume ./models/CelebAHQ/00029.pth --phase test --type 0 --num_domains 2 --index_s A --index_t B --num 5 --name CelebAHQ_ref  

Latent-guided

python test_latent_rdm_save.py --dataroot ./datasets/CelebAHQ --resume ./models/CelebAHQ/00029.pth --phase test --type 0 --num_domains 2 --index_s A --index_t B --num 5 --name CelebAHQ_rdm  

License

All rights reserved.
Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International).
The codes are only for academical research use. For commercial use, please contact [email protected].

Acknowledgements

Codes and network architectures inspired from:

Owner
Qi Mao
PhD student in Institute of Digital Media, Peking University.
Qi Mao
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
A CRM department in a local bank works on classify their lost customers with their past datas. So they want predict with these method that average loss balance and passive duration for future.

Rule-Based-Classification-in-a-Banking-Case. A CRM department in a local bank works on classify their lost customers with their past datas. So they wa

ÖMER YILDIZ 4 Mar 20, 2022
A method to generate speech across multiple speakers

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Facebook Archive 873 Dec 15, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022
Predict the spans of toxic posts that were responsible for the toxic label of the posts

toxic-spans-detection An attempt at the SemEval 2021 Task 5: Toxic Spans Detection. The Toxic Spans Detection task of SemEval2021 required participant

Ilias Antonopoulos 3 Jul 24, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023