RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

Overview

RIFE

RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

Ported from https://github.com/hzwer/arXiv2020-RIFE

Dependencies

  • NumPy
  • PyTorch, preferably with CUDA. Note that torchvision and torchaudio are not required and hence can be omitted from the command.
  • VapourSynth

Installation

pip install --upgrade vsrife

Usage

from vsrife import RIFE

ret = RIFE(clip)

See __init__.py for the description of the parameters.

Comments
  • Getting Error when interpolating

    Getting Error when interpolating

        model.load_model(os.path.join(os.path.dirname(__file__), model_dir), -1)
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\vsrife\RIFE_HDv2.py", line 164, in load_model
        convert(torch.load('{}/flownet.pkl'.format(path), map_location=self.torch_device)))
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\serialization.py", line 608, in load
        return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)
      File "C:\Users\\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\serialization.py", line 777, in _legacy_load
        magic_number = pickle_module.load(f, **pickle_load_args)
    EOFError: Ran out of input  ```
    
    Source file is a 720p 30fps mp4, loaded into VS through Lsmash source, set the format to RGBS. Nothing else
    System specs are R7 3700x, 32GB of ram and a RTX 3060
    
    
    opened by banjaminicc 4
  • Small feature request for RIFEv4: target fps as alternative to multiplier

    Small feature request for RIFEv4: target fps as alternative to multiplier

    I would it be possible to allow setting a target fps instead of a multiplier when using RIFEv4? When going from for example 23.976 (24000/1001) to 60 fps, having to use (60 * 1001 / 24000 =) 2,5025 is kind of annoying. ;) I know could write a wrapper arount the rife.RIFE but I suspect depending on the resulting float it would be more accurate if this was done inside the filter.

    opened by Selur 3
  • vs-rife + latest vs-dpir don't work

    vs-rife + latest vs-dpir don't work

    When using just vs-rife:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV420P8 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, multi=3, device_type='cuda', device_index=0) # new fps: 20
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 30.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30, fpsden=1)
    # Output
    clip.set_output()
    

    everything works. But when I add latest vs-dpir:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import os
    import site
    # Import libraries for onnxruntime
    from ctypes import WinDLL
    path = site.getsitepackages()[0]+'/onnxruntime_dlls/'
    WinDLL(path+'cublas64_11.dll')
    WinDLL(path+'cudart64_110.dll')
    WinDLL(path+'cudnn64_8.dll')
    WinDLL(path+'cudnn_cnn_infer64_8.dll')
    WinDLL(path+'cudnn_ops_infer64_8.dll')
    WinDLL(path+'cufft64_10.dll')
    WinDLL(path+'cufftw64_10.dll')
    WinDLL(path+'nvinfer.dll')
    WinDLL(path+'nvinfer_plugin.dll')
    WinDLL(path+'nvparsers.dll')
    WinDLL(path+'nvonnxparser.dll')
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    from vsdpir import DPIR
    # adjusting color space from YUV420P8 to RGBS for vsDPIRDenoise
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # denoising using DPIRDenoise
    clip = DPIR(clip=clip, strength=15.000, task="denoise", provider=1, device_id=0)
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV444P16, matrix_s="470bg", range_s="limited")
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV444P16 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, multi=3, device_type='cuda', device_index=0) # new fps: 20
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 30.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30, fpsden=1)
    # Output
    clip.set_output()
    

    I get:

    Python exception: [WinError 127] Die angegebene Prozedur wurde nicht gefunden. Error loading "I:\Hybrid\64bit\Vapoursynth\Lib/site-packages\torch\lib\cudnn_cnn_train64_8.dll" or one of its dependencies.
    

    Using just vs-dpir:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    import os
    import site
    # Import libraries for onnxruntime
    from ctypes import WinDLL
    path = site.getsitepackages()[0]+'/onnxruntime_dlls/'
    WinDLL(path+'cublas64_11.dll')
    WinDLL(path+'cudart64_110.dll')
    WinDLL(path+'cudnn64_8.dll')
    WinDLL(path+'cudnn_cnn_infer64_8.dll')
    WinDLL(path+'cudnn_ops_infer64_8.dll')
    WinDLL(path+'cufft64_10.dll')
    WinDLL(path+'cufftw64_10.dll')
    WinDLL(path+'nvinfer.dll')
    WinDLL(path+'nvinfer_plugin.dll')
    WinDLL(path+'nvparsers.dll')
    WinDLL(path+'nvonnxparser.dll')
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/DeinterlaceFilter/TIVTC/libtivtc.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/d2vSource/d2vsource.dll")
    # source: 'C:\Users\Selur\Desktop\VTS_01_1.VOB'
    # current color space: YUV420P8, bit depth: 8, resolution: 720x480, fps: 29.97, color matrix: 470bg, yuv luminance scale: limited, scanorder: telecine
    # Loading C:\Users\Selur\Desktop\VTS_01_1.VOB using D2VSource
    clip = core.d2v.Source(input="E:/Temp/vob_941fdaaeda22090766694391cc4281d5_853323747.d2v")
    # Setting color matrix to 470bg.
    clip = core.std.SetFrameProps(clip, _Matrix=5)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=5)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=5)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 29.970
    clip = core.std.AssumeFPS(clip=clip, fpsnum=30000, fpsden=1001)
    # Deinterlacing using TIVTC
    clip = core.tivtc.TFM(clip=clip)
    clip = core.tivtc.TDecimate(clip=clip, mode=7, rate=10, dupThresh=0.04, vidThresh=3.50, sceneThresh=15.00)# new fps: 10
    # make sure content is preceived as frame based
    clip = core.std.SetFieldBased(clip, 0)
    from vsdpir import DPIR
    # adjusting color space from YUV420P8 to RGBS for vsDPIRDenoise
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="470bg", range_s="limited")
    # denoising using DPIRDenoise
    clip = DPIR(clip=clip, strength=15.000, task="denoise", provider=1, device_id=0)
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="470bg", range_s="limited")
    # set output frame rate to 10.000fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=10, fpsden=1)
    # Output
    clip.set_output()
    

    works fine.

    -> do you have an idea how I could fix this?

    opened by Selur 3
  • half the image is broken when using 4k content

    half the image is broken when using 4k content

    I get a broken output (see attachment), when using:

    # Imports
    import vapoursynth as vs
    # getting Vapoursynth core
    core = vs.core
    # Loading Plugins
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/MiscFilter/MiscFilters/MiscFilters.dll")
    core.std.LoadPlugin(path="i:/Hybrid/64bit/vsfilters/SourceFilter/LSmashSource/vslsmashsource.dll")
    # source: 'G:\TestClips&Co\files\MPEG-4 H.264\4k\Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv'
    # current color space: YUV420P10, bit depth: 10, resolution: 3840x2076, fps: 23.976, color matrix: 2020ncl, yuv luminance scale: limited, scanorder: progressive
    # Loading G:\TestClips&Co\files\MPEG-4 H.264\4k\Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv using LWLibavSource
    clip = core.lsmas.LWLibavSource(source="G:/TestClips&Co/files/MPEG-4 H.264/4k/Back to the Future (1985) 4k 10bit - 0.10.35-0.11.35.mkv", format="YUV420P10", cache=0, fpsnum=24000, fpsden=1001, prefer_hw=1)
    # Setting color matrix to 2020ncl.
    clip = core.std.SetFrameProps(clip, _Matrix=9)
    clip = clip if not core.text.FrameProps(clip,'_Transfer') else core.std.SetFrameProps(clip, _Transfer=9)
    clip = clip if not core.text.FrameProps(clip,'_Primaries') else core.std.SetFrameProps(clip, _Primaries=9)
    # Setting color range to TV (limited) range.
    clip = core.std.SetFrameProp(clip=clip, prop="_ColorRange", intval=1)
    # making sure frame rate is set to 23.976
    clip = core.std.AssumeFPS(clip=clip, fpsnum=24000, fpsden=1001)
    clip = core.misc.SCDetect(clip=clip,threshold=0.150)
    from vsrife import RIFE
    # adjusting color space from YUV420P10 to RGBS for VsTorchRIFE
    clip = core.resize.Bicubic(clip=clip, format=vs.RGBS, matrix_in_s="2020ncl", range_s="limited")
    # adjusting frame count&rate with RIFE (torch)
    clip = RIFE(clip, scale=0.5, multi=3, device_type='cuda', device_index=0, fp16=True) # new fps: 71.928
    # adjusting output color from: RGBS to YUV420P8 for x264Model
    clip = core.resize.Bicubic(clip=clip, format=vs.YUV420P8, matrix_s="2020ncl", range_s="limited", dither_type="error_diffusion")
    # set output frame rate to 71.928fps
    clip = core.std.AssumeFPS(clip=clip, fpsnum=8991, fpsden=125)
    # Output
    clip.set_output()
    

    tried different scale values, fp16 disabled, without scene change detection and other values for mult, nothing helped. https://github.com/HomeOfVapourSynthEvolution/VapourSynth-RIFE-ncnn-Vulkan works fine. 2k content also works fine. I tried different source filters and different files. Would be nice if this could be fixed.

    attachment was too large: https://ibb.co/WGT9pvL

    opened by Selur 2
  • Vapoursynth R58 and Python 3.10 compatibilty

    Vapoursynth R58 and Python 3.10 compatibilty

    trying to install vs-rife in Vapoursynth R58 I get:

    I:\Hybrid\64bit\Vapoursynth>python -m pip install --upgrade vsrife
    Collecting vsrife
      Using cached vsrife-2.0.0-py3-none-any.whl (32.5 MB)
    Requirement already satisfied: torch>=1.9.0 in i:\hybrid\64bit\vapoursynth\lib\site-packages (from vsrife) (1.11.0+cu113)
    Requirement already satisfied: numpy in i:\hybrid\64bit\vapoursynth\lib\site-packages (from vsrife) (1.22.3)
    Collecting VapourSynth>=55
      Using cached VapourSynth-57.zip (567 kB)
      Preparing metadata (setup.py) ... error
      error: subprocess-exited-with-error
    
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> [15 lines of output]
          Traceback (most recent call last):
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 64, in <module>
              dll_path = query(winreg.HKEY_LOCAL_MACHINE, REGISTRY_PATH, REGISTRY_KEY)
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 38, in query
              reg_key = winreg.OpenKey(hkey, path, 0, winreg.KEY_READ)
          FileNotFoundError: [WinError 2] Das System kann die angegebene Datei nicht finden
    
          During handling of the above exception, another exception occurred:
    
          Traceback (most recent call last):
            File "<string>", line 2, in <module>
            File "<pip-setuptools-caller>", line 34, in <module>
            File "C:\Users\Selur\AppData\Local\Temp\pip-install-s7976394\vapoursynth_701a37362cd045f58da4818d07217c99\setup.py", line 67, in <module>
              raise OSError("Couldn't detect vapoursynth installation path")
          OSError: Couldn't detect vapoursynth installation path
          [end of output]
    
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    

    any idea how to fix it?

    opened by Selur 2
  • How to set 'clip.num_frames

    How to set 'clip.num_frames

    How to set the frames numbers?I only found the "multi: int ="in "init.py".Can I set the whole number of the frames numbers?Like 60 fps?Thanks!

    opened by feaonal 2
  • Requesting example vapoursynth script

    Requesting example vapoursynth script

    I tried to create a valid script for a while, but I can't make it run.

    from vsrife import RIFE
    import vapoursynth as vs
    core = vs.core
    core.std.LoadPlugin(path='/usr/lib/x86_64-linux-gnu/libffms2.so')
    clip = core.ffms2.Source(source='test.webm')
    print(clip) # YUV420P8
    clip = vs.core.resize.Bicubic(clip, format=vs.RGBS)
    print(clip) # RGBS
    clip = RIFE(clip)
    clip.set_output()
    
    vspipe --y4m inference.py - | x264 - --demuxer y4m -o example.mkv
    
    Error: Failed to retrieve frame 0 with error: Resize error: Resize error 3074: no path between colorspaces (2/2/2 => 0/2/2). May need to specify additional colorspace parameters.
    

    Can I get an example that should actually work?

    opened by styler00dollar 2
  • [Q] 0bit models in the repo

    [Q] 0bit models in the repo

    Hi

    i see in the model folders, have a files (models?) with 0bits, i presume when the plugin "learn", the models is filled with the data

    this is correct?

    then, in a system with install this plugin as system-wide, these models should be have a write permissions? (in case of linux)

    greetings

    opened by sl1pkn07 2
  • Wrong output framerate

    Wrong output framerate

    That - https://github.com/HolyWu/vs-rife/blob/91e894f41cbdfb458ef8f776c47c7f652158bc6f/vsrife/init.py#L280 - doesn't work as expected because of two reasons:

    1. clip.fps.numerator / denominator can be 0 / 1 (from the docs: "It is 0/1 when the clip has a variable framerate")
    2. there's a frame duration attached to each frame, and it seems like FrameEval(frame_adjuster) return frames with the original durations, not the ones from format_clip

    A quick fix that works:

        clip0 = vs.core.std.Interleave([clip] * factor_num)
        if factor_den>1:
            clip0 = clip0.std.SelectEvery(cycle=factor_den,offsets=0)
        clip1 = clip.std.DuplicateFrames(frames=clip.num_frames - 1).std.DeleteFrames(frames=0)
        clip1 = vs.core.std.Interleave([clip1] * factor_num)
        if factor_den>1:
            clip1 = clip1.std.SelectEvery(cycle=factor_den,offsets=0)
    
    opened by chainikdn 1
  • How to set clip.num_frames

    How to set clip.num_frames

    How to set the frames numbers?I only found the "multi: int ="in "init.py".Can I set the whole number of the frames numbers?Like 60 fps?Thanks!

    opened by feaonal 0
Releases(v3.1.0)
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation

Orange Chicken: Data-driven Model Generalizability in Crosslinguistic Low-resource Morphological Segmentation This repository contains code and data f

Zoey Liu 0 Jan 07, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022