Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Overview

Learning What To Do by Simulating the Past

This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) algorithm introduced in the paper "Learning What To Do by Simulating the Past". This code is provided as is, and will not be maintained. Here we describe how to reproduce the experimental results reported in the paper. You can find video of policies trained with Deep RLSP here.

Citation

David Lindner, Rohin Shah, Pieter Abbeel, Anca Dragan. Learning What To Do by Simulating the Past. In International Conference on Learning Representations (ICLR), 2021.

@inproceedings{lindner2021learning,
    title={Learning What To Do by Simulating the Past},
    author={Lindner, David and Shah, Rohin and Abbeel, Pieter and Dragan, Anca},
    booktitle={International Conference on Learning Representations (ICLR)},
    year={2021},
}

Table of Contents

Set up the environment

There are two options to set up the environment to run the code: either using Docker, or setting up the environment manually using Anaconda. We recommend to use the Docker setup.

Docker

You can use Docker to set up the dependencies including MuJoCo automatically. To do this install Docker, then copy a valid MuJoCo key to docker/mjkey.txt, and execute the following commands:

docker build --tag deep-rlsp:1.0 docker
docker run -v `pwd`:/deep-rlsp/ -w /deep-rlsp/ -i -t deep-rlsp:1.0 bash
conda activate deep-rlsp

The first command sets up a container with all required dependencies including MuJoCo. The second command starts an interactive shell inside the container and the third command activates the Anaconda environment set up inside the container. You can now run all experiments inside this container. Note, that you might have to modify docker/Dockerfile to use Tensorflow with GPU support.

Manual setup

Alternatively, you can set up the same Anaconda environment manually. In this case MuJoCo has to be installed locally. If using a non-standard location, the environment variables MUJOCO_PY_MJKEY_PATH and MUJOCO_PY_MUJOCO_PATH have to be set accordingly.

To perform the manual setup, install Anaconda locally and run the following commands to set up the environment:

conda env create -f docker/environment.yml
conda activate deep-rlsp
pip install mujoco-py==2.0.2.9
pip install -e .
conda activate deep-rlsp

This sets up an Anaconda environment with the required dependencies and activates it, which can then be used to run the code.

Reproducing the experiments

Now we describe how to reproduce the experiments described in the paper. We first describe the experiments in Gridworld environments, discussed in Section 3.2, and then the experiments in MuJoCo environments, discussed in Sections 3.3 and 3.4. For each of these we describe how to run Deep RLSP, the ablations discussed in the paper, and GAIL as a baseline.

Gridworld experiments

To run the Gridworld experiments reported in Section 3.2, you first have to train an inverse dynamics model for each environment:

python scripts/train_inverse_dynamics.py --gridworlds RoomDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds ApplesDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds TrainDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds BatteriesDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds BatteriesEasy-v0
python scripts/train_inverse_dynamics.py --gridworlds RoomBad-v0

The models will be saved in tf_ckpt, and will have names such as tf_ckpt_mlp_RoomDefault-v0_20210313_160730. You might have to create the folder tf_ckpt before running the models.

You can then run the experiments with the following commands:

python src/deep_rlsp/run.py with latent_rlsp_config room_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_RoomDefault-v0_20200930_132218
python src/deep_rlsp/run.py with latent_rlsp_config train_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_TrainDefault-v0_20200930_132234
python src/deep_rlsp/run.py with latent_rlsp_config apples_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_ApplesDefault-v0_20200930_132414
python src/deep_rlsp/run.py with latent_rlsp_config batteries_easy inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_mlp_BatteriesDefault-v0_20200930_123401
python src/deep_rlsp/run.py with latent_rlsp_config batteries_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_mlp_BatteriesDefault-v0_20200930_123401
python src/deep_rlsp/run.py with latent_rlsp_config room_bad inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_RoomDefault-v0_20200930_132218

adapting the paths of the inverse dynamics model.

You can run the "AverageFeatures" ablation by replacing latent_rlsp_config with latent_rlsp_ablation in the commands above.

MuJoCo experiments

To reproduce our experiments in the MuJoCo simulator, that we report in Sections 3.3 and 3.4, you need to perform the following steps:

  1. Obtain an original policy
  2. Run Deep RLSP
  3. Evaluate the results
  4. Compare to baselines / ablations

We now describe each step in turn.

Obtaining an original policy

We consider two different ways of obtaining policies to immitate:

  1. Obtain policy by optimizing a given reward function
  2. Obtain policy by running Dynamics-Aware Unsupervised Discovery of Skills (DADS)

Obtain policy by optimizing a given reward function

To train a policy on the reward function of a given MuJoCo environment, use the scripts/train_sac.py script. With the following commands you can train policies on the environments we discuss in the paper and save them in the policies/ folder:

python scripts/train_sac.py InvertedPendulum-v2 policies/sac_pendulum_6e4 --timesteps 60000
python scripts/train_sac.py HalfCheetah-FW-v2 policies/sac_cheetah_fw_2e6 --timesteps 2000000
python scripts/train_sac.py HalfCheetah-BW-v2 policies/sac_cheetah_bw_2e6 --timesteps 2000000
python scripts/train_sac.py Hopper-v2 policies/sac_hopper_2e6 --timesteps 2000000

This uses the soft actor-critic algorithm to train a policy using the hyperparameters from rl-baselines-zoo. The hyperparameters are defined in src/deep_rlsp/solvers/__init__.py.

For convenience, we provide trained policies in the policies/ folder of this repository.

Obtain policy by running DADS

We run DADS using the code provided by the authors. To reproduce the our experiments, we provide rollouts sampled from the jumping and balancing skills in the folder skills/.

Run Deep RLSP

We are now ready to run the full Deep RLSP algorithm. The main file to run experiments is located at src/deep_rlsp/run_mujoco.py. The following commands reproduce the experiments discussed in the paper:

Pendulum

python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=50

Cheetah running forward

python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=50

Cheetah running backward

python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=50

Hopper

python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=50

Cheetah balancing skill

python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=50

Cheetah jumping skill

python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=50

The results will be saved in the results/ folder. The trained (VAE and dynamics) models will be saved in tf_ckpt.

Evaluate the results

In the paper, we evaluate Deep RLSP in two ways:

  1. Train a new policy on the inferred reward function from Deep RLSP and evaluate this policy (as in Table 1)
  2. Evaluate the policy trained during Deep RLSP (for the balancing and jumping skills)

Train a new policy on the inferred reward function

To produce the results provided in Table 1 in the paper, we run SAC on the final reward function inferred by the Deep RLSP algorithm. To do this run the following command

python scripts/mujoco_evaluate_inferred_reward.py with experiment_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal

providing the subfolder of results/ that corresponds to the experiment you want to evaluate. This creates a sub-folder in results/mujoco/eval that contains the trained policy.

Then, to evaluate this policy, run

python scripts/evaluate_policy.py results/mujoco/eval/20200605_203113_20200603_220928_InvertedPendulum-v2_optimal_1/policy.zip sac InvertedPendulum-v2 --num_rollouts 100

for the corresponding policy file. This samples 100 trajectories from the policy and determines the mean and standard deviation of the policy return.

The same script can also be used to visualize the policies using the --render or --out_video arguments.

Evaluate the policy trained during Deep RLSP

The policies trained during Deep RLSP are saved in the results folder of a specific run as rlsp_policy_1.zip, rlsp_policy_2.zip, ...

To evaluate these policies, run

python scripts/evaluate_policy.py results/mujoco/20200528_150813_InvertedPendulum-v2_optimal/rlsp_policy_112.zip sac InvertedPendulum-v2 --num_rollouts 100

for the corresponding policy file. This samples 100 trajectories from the policy and determines the mean and standard deviation of the policy return.

The same script can also be used to visualize the policies using the --render or --out_video arguments.

AverageFeatures and Waypoints ablations

To ensure comparability with a limited number of random seeds, we run the ablations with the same trained VAE and dynamics models and the same input states as Deep RLSP. This can be done the following commands:

python src/deep_rlsp/ablation_AverageFeatures.py with result_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal
python src/deep_rlsp/ablation_Waypoints.py with result_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal

passing a folder containing the corresponding results of Deep RLSP as an argument. The policy returned by this baseline algorithm can be found in results/mujoco/, and they can also be visualized and evaluated using the scripts/evaluate_policy.py script.

Compare to GAIL

Running Generative Adversarial Imitation Learning (GAIL) requires the imitation library. You can install it using:

pip install imitation==0.1.1

To run GAIL, we provide demonstrations from the expert policies in the correct format in the demonstrations folder. You can create demonstration data from already trained expert policies by running:

python scripts/create_demonstrations.py policies/sac_cheetah_fw_2e6.zip demonstrations/sac_cheetah_fw_traj_len_{}_seed_{}.pkl 10 generate_seed HalfCheetah-FW-v2 1

Then you can run GAIL on the demonstration data by running:

python scripts/run_gail.py with gail half_cheetah env_name='HalfCheetah-FW-v2' rollout_path=demonstrations/sac_cheetah_fw_traj_len_1_seed_22750069.pkl log_dir=./gail_logs/gail_cheetah_fw_len_1_demoseed_22750069/

To visualize the resulting policies:

python scripts/evaluate_policy.py gail_logs/gail_cheetah_fw_len_1_demoseed_22750069/checkpoints/final/gen_policy gail HalfCheetah-FW-v2 --render --out_video=videos/gail_balancing_len_1.mp4

Code quality

We use black for code formatting, flake8 for linting, and mypy to check type hints. You can run all checks with bash code_checks.sh and unit tests with python setup.py test.

Owner
Center for Human-Compatible AI
CHAI seeks to develop the conceptual and technical wherewithal to reorient the general thrust of AI research towards provably beneficial systems.
Center for Human-Compatible AI
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022