Official repository for ABC-GAN

Overview

ABC-GAN

The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversarial networks at ETH zurich.

Additional Experiments

There is a second branch called loose_encoder in which you will find another experiment conducted during the thesis. Unfortunately we didn't had enough time to make an in-depth analysis of the results. The loose encoder can be added to any other experiment with a simple flag and in specific datasets such as CelebA results in astonishing improvement of generated image quality. To the best of our knowledge there is no GAN out there resulting in similar realistic images on celebA with a 64 by 64 output resolution. (Check the other branch for some samples)

Prerequisites

The code has been built and tested using the following packages (and versions)

  • Pillow (4.0.0)
  • scikit-learn (0.18.1)
  • scipy (0.18.1)
  • numpy (1.12.1)
  • tensorflow-gpu (1.1.0rc1)

Usage

Make sure you have a running tensorflow setup.

We added some special flags to have a better overview of the different experiments. One thing we added is a folder_suffix which will be appended to all checkpoint, log and samples folders.

Here are some examples to train the ABC-GAN with datasets:

  • python main.py --dataset celebA --folder_suffix=_abcgan_1_GpD_o64 --input_height=128 --output_height=64 --GpD_ratio=1 --blur_strategy=3x3 --epoch=8 --train --crop True
  • python main.py --dataset lsun --folder_suffix=_abcgan_lsun_controller_blur_3x3_o128 --input_fname_pattern=*.webp --input_height=256 --output_height=128 --GpD_ratio=-1 --blur_strategy=3x3 --epoch=20 --batch-size=64 --train --crop True
  • python main.py --dataset cifar10 --folder_suffix=_abcgan_cifar_3GpD_regressive_hyperbolic_o32 --input_height=32 --input_fname_pattern=*.png --output_height=32 --blur_strategy=reg_hyp --epoch=100 --train --crop True

Datasets

The following datasets have been used:

  • CelebA (> 200'000 celebrity faces, 178 px lower side)
  • Cifar10 (60'000 pictures of 10 categories, 32x32 px)
  • LSUN (> 3 Mio images of bedrooms 256 px lower side)
  • ImageNet subset (ImageNet subset, 64 by 64 pixels)

The easiest way to include the datasets is by having all images in one folder. Using such a dataset can be done by just changing the input_fname_pattern to the correct file ending and specifying the folder name with dataset. (The folder with the dataset has to be in the subfolder data)

Folder structure used for our experiments:

  • ABC-GAN
    • data
      • celebA
      • cifar10
      • lsun
      • train_64x64
    • download.py
    • LICENSE
    • main.py
    • model.py
    • ops.py
    • utils.py
    • README.md
    • report

train_64x64 is referring to the ImageNet subset. We used the same one as used in Improved Wasserstein GAN

Special Case LSUN

Since the LSUN dataset comes in a hierarchical structure with many files it makes sense to just use a reference file with the respective paths to the files. The best way to do that is:

  1. Inside the abc-gan/data folder create a subfolder lsun
  2. Extract the downloaded lsun dataset here (we used bedroom_train_lmdb.zip)
  3. Make a list of all files appearing in the extracted lsun_train folder
  4. Name this file lsun_images

The lsun_images file should have a structure such as:

lsun_train/f/f/f/f/f/b/fffffbb9225d069b7f47e464bdd75e6eff82b61c.webp
lsun_train/f/f/f/f/f/6/fffff6cd254f0ead6191f3003519f6805e1e6619.webp
lsun_train/f/f/f/f/f/5/fffff548f9109fc3be2d71088f8e202ea78ac620.webp
lsun_train/f/f/f/f/f/a/fffffa900959150cb53ac851b355ec4adbc22e4e.webp
lsun_train/f/f/f/f/8/0/ffff80a1dc7e7d790ccd46f2fdd4dcfca929d2c3.webp
...

In order to use LSUN just again change the input_fname_pattern and switch the dataset to lsun. We hard coded the special case of lsun such that we will use the reference file to get the paths to the images.

Results

Adaptive Controller

One of the most important points during training of GANs is balancing the discriminator against the generator. If one of the two dominates the other a mode collapse can occur. Many people started playing around with the ratio between discriminator and generator. And others used thresholds to determine if one has to train the discriminator or the generator.

In our work, we implemented a simple controller to get rid of this manual tuning. The output of the controller is a probability of either training the discriminator or the generator for one iteration. The controller gives you the following benefits:

  • Reduced training time (up to a factor of 5)
  • Reuse the same network for different datasets (The controller automatically adapts to other datasets so you don't have to tune the ratio between D and G anymore)
  • In some cases, the controller also improves stability during training

Controller

Controller architecture:

Note: The controller input is calculated using the two losses of the discriminator (loss for real and for fake images).

controller

The controller tries to keep the avg. value always at a reference point. The output of the controller is a probability of training either the discriminator or the generator.

Training behaviour

Training curve showing discriminator vs generator training iterations

Note: Without a controller and a fixed ratio between discriminator and generator updates we would see two straight lines

training curve G against D Through the controller, the training of the networks adapts itself. In the beginning, the generator is getting trained more often but after around 5k steps the discriminator takes over. As known from GAN theory we actually want the discriminator to dominate the generator. And without a controller, this is very hard to achieve without changing the loss function (Wasserstein Loss, Cramer loss etc.)

Convergence speed comparison of DCGAN with different GpD ratios and our controller

Note: One iteration is either training once the discriminator or the generator

convergence comparison with and without controller Comparison of convergence speed. GpD: Generator per Discriminator training iterations. (e.g. 3 GpD means we train the generator 3 times per discriminator)

Adaptive Blur

GANs still have trouble with stability, image quality and output resolution. We implemented an adaptive blur filter to assist the discriminator and therefore improve overall results. We figured out that the discriminator has issues with details in images. To overcome this issue we just blur all images before they reach the discriminator. So in the end, the discriminator either sees blurred images from the generator or blurred images of the dataset. Using a fixed blur such as a 3 by 3 Gaussian kernel as we used in our experiments, has the side effect of additional noise in the output image. Since the generator has not to care about the details (since his output will be blurred anyway) he can add noise. To mitigate this effect, we added an adaptive blur which changes over training time. In the beginning, we have a strong blur such that the GAN can focus on improving the base structure of the output. In the end of the training, we have almost no blur, such that the GAN can now focus on the details.

The blur gives you the following benefits:

  • Improved stability during training. (We encountered several times the case that without blur the network was not able to converge at all)
  • Improved image quality. (Despite the noise the output images look much more realistic)
  • You can increase the resolution (We were able to use DCGAN for generating images at 256 by 256 pixels using CelebA or LSUN)

DCGAN vs DCGAN with Blur (DCGAN+B)

Image showing plain DCGAN without and with blur (DCGAN+B)

DCGAN without and with blur The resulting images look much better with blur than without. They have more details but also noise.

Comparison of different blurring strategies

We compare two regressive blur kernel (e.g. make sigma of a Gaussian blur smaller during training)

Comparison of blurring strategies The hyperbolic decreasing Gaussian blur is best when it comes to reducing the noise in the images.

ABC-GAN

Combination of the Adaptive Blur and Controller GAN.

We conducted different experiments using various datasets such as LSUN, CIFAR10 and CelebA. Some of the resulting images have been downscaled by a factor of two in order to reduce noise. (Since on some screens and also printed the noise looks very annoying.)

Note: In some samples, you will see a green bar at the top. The bar is the actual input value of the controller on a per image basis. If the reference value is for example 0.25 (like in our code) this means that on average over one batch we want the green bar to be around 25%.

LSUN bedrooms dataset

ABC-GAN with a fixed Gaussian Blur kernel of 3x3 and output resolution of 256 by 256 pixels

Randomly sampled batch. Downscaled to 128 by 128 pixels to reduce noise.

lsun using ABC-GAN with fixed kernel and downscaled to 128 by 128 pixels We seem to reach the limit of DCGAN with this experiment. The same experiment without Blur failed. The images look not very realistic but one still sees that some of them look close to bedrooms.

CIFAR10

Comparison of results gathered using CIFAR10

CIFAR10 comparison our experiments

Comparison of our best results with other works

CIFAR10 comparison our work and others

Publications

Acknowledgement

  • Thanks, Prof. Luc Van Gool for the semester thesis at the Computer Vision Lab D-ITET at ETH Zurich
  • Thanks for supervising this thesis Eirikur Agustsson and Radu Timofte
  • This work has been based on the DCGAN implementation found on GitHub

Author

Igor Susmelj / @igorsusmelj

Owner
IgorSusmelj
Co-founder at Lightly Degree from ETH Zurich with a focus on embedded computing and machine learning.
IgorSusmelj
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023