Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Overview

Trajectory Transformer

Code release for Reinforcement Learning as One Big Sequence Modeling Problem.

Installation

All python dependencies are in environment.yml. Install with:

conda env create -f environment.yml
conda activate trajectory
pip install -e .

For reproducibility, we have also included system requirements in a Dockerfile (see installation instructions), but the conda installation should work on most standard Linux machines.

Usage

Train a transformer with: python scripts/train.py --dataset halfcheetah-medium-v2

To reproduce the offline RL results: python scripts/plan.py --dataset halfcheetah-medium-v2

By default, these commands will use the hyperparameters in config/offline.py. You can override them with runtime flags:

python scripts/plan.py --dataset halfcheetah-medium-v2 \
	--horizon 5 --beam_width 32

A few hyperparameters are different from those listed in the paper because of changes to the discretization strategy. These hyperparameters will be updated in the next arxiv version to match what is currently in the codebase.

Pretrained models

We have provided pretrained models for 16 datasets: {halfcheetah, hopper, walker2d, ant}-{expert-v2, medium-expert-v2, medium-v2, medium-replay-v2}. Download them with ./pretrained.sh

The models will be saved in logs/$DATASET/gpt/pretrained. To plan with these models, refer to them using the gpt_loadpath flag:

python scripts/plan.py --dataset halfcheetah-medium-v2 \
	--gpt_loadpath gpt/pretrained

pretrained.sh will also download 15 plans from each model, saved to logs/$DATASET/plans/pretrained. Read them with python plotting/read_results.py.

To create the table of offline RL results from the paper, run python plotting/table.py. This will print a table that can be copied into a Latex document. (Expand to view table source.)
\begin{table*}[h]
\centering
\small
\begin{tabular}{llrrrrrr}
\toprule
\multicolumn{1}{c}{\bf Dataset} & \multicolumn{1}{c}{\bf Environment} & \multicolumn{1}{c}{\bf BC} & \multicolumn{1}{c}{\bf MBOP} & \multicolumn{1}{c}{\bf BRAC} & \multicolumn{1}{c}{\bf CQL} & \multicolumn{1}{c}{\bf DT} & \multicolumn{1}{c}{\bf TT (Ours)} \\ 
\midrule
Medium-Expert & HalfCheetah & $59.9$ & $105.9$ & $41.9$ & $62.4$ & $86.8$ & $95.0$ \scriptsize{\raisebox{1pt}{$\pm 0.2$}} \\ 
Medium-Expert & Hopper & $79.6$ & $55.1$ & $0.9$ & $111.0$ & $107.6$ & $110.0$ \scriptsize{\raisebox{1pt}{$\pm 2.7$}} \\ 
Medium-Expert & Walker2d & $36.6$ & $70.2$ & $81.6$ & $98.7$ & $108.1$ & $101.9$ \scriptsize{\raisebox{1pt}{$\pm 6.8$}} \\ 
Medium-Expert & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $116.1$ \scriptsize{\raisebox{1pt}{$\pm 9.0$}} \\ 
\midrule
Medium & HalfCheetah & $43.1$ & $44.6$ & $46.3$ & $44.4$ & $42.6$ & $46.9$ \scriptsize{\raisebox{1pt}{$\pm 0.4$}} \\ 
Medium & Hopper & $63.9$ & $48.8$ & $31.3$ & $58.0$ & $67.6$ & $61.1$ \scriptsize{\raisebox{1pt}{$\pm 3.6$}} \\ 
Medium & Walker2d & $77.3$ & $41.0$ & $81.1$ & $79.2$ & $74.0$ & $79.0$ \scriptsize{\raisebox{1pt}{$\pm 2.8$}} \\ 
Medium & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $83.1$ \scriptsize{\raisebox{1pt}{$\pm 7.3$}} \\ 
\midrule
Medium-Replay & HalfCheetah & $4.3$ & $42.3$ & $47.7$ & $46.2$ & $36.6$ & $41.9$ \scriptsize{\raisebox{1pt}{$\pm 2.5$}} \\ 
Medium-Replay & Hopper & $27.6$ & $12.4$ & $0.6$ & $48.6$ & $82.7$ & $91.5$ \scriptsize{\raisebox{1pt}{$\pm 3.6$}} \\ 
Medium-Replay & Walker2d & $36.9$ & $9.7$ & $0.9$ & $26.7$ & $66.6$ & $82.6$ \scriptsize{\raisebox{1pt}{$\pm 6.9$}} \\ 
Medium-Replay & Ant & $-$ & $-$ & $-$ & $-$ & $-$ & $77.0$ \scriptsize{\raisebox{1pt}{$\pm 6.8$}} \\ 
\midrule
\multicolumn{2}{c}{\bf Average (without Ant)} & 47.7 & 47.8 & 36.9 & 63.9 & 74.7 & 78.9 \hspace{.6cm} \\ 
\multicolumn{2}{c}{\bf Average (all settings)} & $-$ & $-$ & $-$ & $-$ & $-$ & 82.2 \hspace{.6cm} \\ 
\bottomrule
\end{tabular}
\label{table:d4rl}
\end{table*}

To create the average performance plot, run python plotting/plot.py. (Expand to view plot.)

Docker

Copy your MuJoCo key to the Docker build context and build the container:

cp ~/.mujoco/mjkey.txt azure/files/
docker build -f azure/Dockerfile . -t trajectory

Test the container:

docker run -it --rm --gpus all \
	--mount type=bind,source=$PWD,target=/home/code \
	--mount type=bind,source=$HOME/.d4rl,target=/root/.d4rl \
	trajectory \
	bash -c \
	"export PYTHONPATH=$PYTHONPATH:/home/code && \
	python /home/code/scripts/train.py --dataset hopper-medium-expert-v2 --exp_name docker/"

Running on Azure

Setup

  1. Launching jobs on Azure requires one more python dependency:
pip install git+https://github.com/JannerM/[email protected]
  1. Tag the image built in the previous section and push it to Docker Hub:
export DOCKER_USERNAME=$(docker info | sed '/Username:/!d;s/.* //')
docker tag trajectory ${DOCKER_USERNAME}/trajectory:latest
docker image push ${DOCKER_USERNAME}/trajectory
  1. Update azure/config.py, either by modifying the file directly or setting the relevant environment variables. To set the AZURE_STORAGE_CONNECTION variable, navigate to the Access keys section of your storage account. Click Show keys and copy the Connection string.

  2. Download azcopy: ./azure/download.sh

Usage

Launch training jobs with python azure/launch_train.py and planning jobs with python azure/launch_plan.py.

These scripts do not take runtime arguments. Instead, they run the corresponding scripts (scripts/train.py and scripts/plan.py, respectively) using the Cartesian product of the parameters in params_to_sweep.

Viewing results

To rsync the results from the Azure storage container, run ./azure/sync.sh.

To mount the storage container:

  1. Create a blobfuse config with ./azure/make_fuse_config.sh
  2. Run ./azure/mount.sh to mount the storage container to ~/azure_mount

To unmount the container, run sudo umount -f ~/azure_mount; rm -r ~/azure_mount

Reference

@article{janner2021sequence,
  title={Reinforcement Learning as One Big Sequence Modeling Problem},
  author={Michael Janner and Qiyang Li and Sergey Levine},
  journal={arXiv preprint arXiv:2106.02039},
  year={2021},
}

Acknowledgements

The GPT implementation is from Andrej Karpathy's minGPT repo.

Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022