Code for Learning to Segment The Tail (LST)

Related tags

Deep LearningLST_LVIS
Overview

Learning to Segment the Tail

[arXiv]


In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from the project maskrcnn_benchmark, which is an excellent codebase! If you get any problem that causes you unable to run the project, you can check the issues under maskrcnn_benchmark first.

Installation

Please following INSTALL.md for maskrcnn_benchmark. For experiments on LVIS_v0.5 dataset, you need to use lvis-api.

LVIS Dataset

After downloading LVIS_v0.5 dataset (the images are the same as COCO 2017 version), we recommend to symlink the path to the lvis dataset to datasets/ as follows

# symlink the lvis dataset
cd ~/github/LST_LVIS
mkdir -p datasets/lvis
ln -s /path_to_lvis_dataset/annotations datasets/lvis/annotations
ln -s /path_to_coco_dataset/images datasets/lvis/images

A detailed visualization demo for LVIS is LVIS_visualization. You'll find it is the most useful thing you can get from this repo :P

Dataset Pre-processing and Indices Generation

dataset_preprocess.ipynb: LVIS dataset is split into the base set and sets for the incremental phases.

balanced_replay.ipynb: We generate indices to load the LVIS dataset offline using the balanced replay scheme discussed in our paper.

Training

Our pre-trained model is model. You can trim the model and load it for LVIS training as in trim_model. Modifications to the backbone follows MaskX R-CNN. You can also check our paper for detail.

training for base

The base training is the same as conventional training. For example, to train a model with 8 GPUs you can run:

python -m torch.distributed.launch --nproc_per_node=8 /path_to_maskrcnn_benchmark/tools/train_net.py --use-tensorboard --config-file "/path/to/config/train_file.yaml"  MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 1000

The details about MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN is discussed in maskrcnn-benchmark.

Edit this line to initialze the dataloader with corresponding sorted category ids.

training for incremental steps

The training for each incremental phase is armed with our data balanced replay. It needs to be initialized properly here, providing the corresponding external img-id/cls-id pairs for data-loading.

get distillation

We use ground truth bounding boxes to get prediction logits using the model trained from last step. Change this to decide which classes to be distilled.

Here is an example for running:

python ./tools/train_net.py --use-tensorboard --config-file "/path/to/config/get_distillation_file.yaml" MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 1000

The output distillation logits are saved in json format.

Evaluation

The evaluation for LVIS is a little bit different from COCO since it is not exhausted annotated, which is discussed in detail in Gupta et al.'s work.

We also report the AP for each phase and each class, which can provide better analysis.

You can run:

export NGPUS=8
python -m torch.distributed.launch --nproc_per_node=$NGPUS /path_to_maskrcnn_benchmark/tools/test_net.py --config-file "/path/to/config/train_file.yaml" 

We also provide periodically testing to check the result better, as discussed in this issue.

Thanks for all the previous work and the sharing of their codes. Sorry for my ugly code and I appreciate your advice.

Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022