Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

Overview

You Only Cut Once (YOCO)

YOCO is a simple method/strategy of performing augmentations, which enjoys the properties of parameter-free, easy usage, and boosting almost all augmentations for free (negligible computation & memory cost). We hope our study will attract the community’s attention in revisiting how to perform data augmentations.

You Only Cut Once: Boosting Data Augmentation with a Single Cut
Junlin Han, Pengfei Fang, Weihao Li, Jie Hong, Ali Armin, Ian Reid, Lars Petersson, Hongdong Li
DATA61-CSIRO and Australian National University and University of Adelaide
Preprint

@inproceedings{han2022yoco,
  title={You Only Cut Once: Boosting Data Augmentation with a Single Cut},
  author={Junlin Han and Pengfei Fang and Weihao Li and Jie Hong and Mohammad Ali Armin and and Ian Reid and Lars Petersson and Hongdong Li},
  booktitle={arXiv preprint arXiv:2201.12078},
  year={2022}
}

YOCO cuts one image into two equal pieces, either in the height or the width dimension. The same data augmentations are performed independently within each piece. Augmented pieces are then concatenated together to form one single augmented image.  

Results

Overall, YOCO benefits almost all augmentations in multiple vision tasks (classification, contrastive learning, object detection, instance segmentation, image deraining, image super-resolution). Please see our paper for more.

Easy usages

Applying YOCO is quite easy, here is a demo code of performing YOCO at the batch level.

***
images: images to be augmented, here is tensor with (b,c,h,w) shape
aug: composed augmentation operations
h: height of images
w: width of images
***

def YOCO(images, aug, h, w):
    images = torch.cat((aug(images[:, :, :, 0:int(w/2)]), aug(images[:, :, :, int(w/2):w])), dim=3) if \
    torch.rand(1) > 0.5 else torch.cat((aug(images[:, :, 0:int(h/2), :]), aug(images[:, :, int(h/2):h, :])), dim=2)
    return images
    
for i, (images, target) in enumerate(train_loader):    
    aug = torch.nn.Sequential(
      transforms.RandomHorizontalFlip(), )
    _, _, h, w = images.shape
    # perform augmentations with YOCO
    images = YOCO(images, aug, h, w) 

Prerequisites

This repo aims to be minimal modifications on official PyTorch ImageNet training code and MoCo. Following their instructions to install the environments and prepare the datasets.

timm is also required for ImageNet classification, simply run

pip install timm

Images augmented with YOCO

For each quadruplet, we show the original input image, augmented image from image-level augmentation, and two images from different cut dimensions produced by YOCO.

Contact

[email protected] or [email protected]

If you tried YOCO in other tasks/datasets/augmentations, please feel free to let me know the results. They will be collected and presented in this repo, regardless of positive or negative. Many thanks!

Acknowledgments

Our code is developed based on official PyTorch ImageNet training code and MoCo.

Owner
ANU/CSIRO/AIML/U Adelaide. Working on vision/graphics. Email: [email
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

LAVT: Language-Aware Vision Transformer for Referring Image Segmentation Where we are ? 12.27 目前和原论文仍有1%左右得差距,但已经力压很多SOTA了 ckpt__448_epoch_25.pth mIoU

zichengsaber 60 Dec 11, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022