Implemented a Google Maps prototype that provides the shortest route in terms of distance

Overview

City-Navigation-AI

Implemented a Google Maps prototype that provides the shortest route in terms of distance, the fastest route, the route with the fewest turns, and a scenic route that avoids roads when provided a source and destination. The algorithms used were DFS, BFS, A*, and Iterative Depth First Search.

Approach to Road trip!

Abstraction:

Set of Valid states: Set of all probable segments which has routes in road-segments file.

Successor Function: Set of all possible segments has route from city1 which consists of parameters such as distance,speedlimit,city1,city2,highwayname
After generating all the successor routes we calculate the heuristic_score and cost_function for specified cost_attribute.

Cost Function: We have four cost functions such as:
  1. Segments:The cost for this is uniform 1 since we have only one edge from city1 to city2.
  2. Distance: The cost for this is the distance between city1 and city2 which is specified in road-segments file.
  3. Time: The cost for this is the time taken to travel from city1 to city2 which is evaluated by distance divided by speed_limit provided in road-segmensts file.
  4. Delivery: The cost for this is the time taken to deliver a product from city1 to city2. This will be evaluated by following conditions.
    • If the speed_limit is above 50 then there is 5% chance of falling out of the truck and the product gets damaged. So, while using this the probability of mistake is calculated as tanh(distance/1000)
    • So the time taken would incrase by two times because he has to go back to start city and pick the product.
    • If the speed_limit is less than 50 then there is no extra time_taken to deliver the product.

Goal State: Reaching end city on shortest possible cost function which will be specified by the user.

Initial State: Initial state is the start city provided by the user.

Heuristic Functions: Finding distance using latitude and longitude from current city to destination city which are provided in city-gps file. For some of the cities, langitudes and longitudes are missing so for the city which is missing we are considering the heuristic score of the previous city and adding to to the current path distance which will be used as current city's heuristic score.

Description of Algorithm:

Implemented using A* algorithm with an heuristic and specified cost function.
  1. Intially by using pandas module loading all the data from specified files to get road-segments and gps details and converting them to lists for better accessing. As mentioned, including the bidirectional condition as well.
  2. Calculating the time taken for all segments and mistakes for delivery cost function and adding to the list.
  3. Adding the start city into the frontier(fringe)
  4. Maintaing explored routes which is empty at the initial point.
  5. Looping till the frontier is not empty:
    1. Pop the latest city using heappop method in heapq module which gives the minheap board which has less f_score.
    2. Checking whether the board popped is the destination city. If yes, the return and print the segments, distance travelled, time taken and delivery.
    3. Otherwise, add this segment to explored list
    4. Generate all the successors segments for this current_city.
      1. For each successor route, calculates the F_score which is the sum of heuristic score and cost function based on cost_attribute.
      2. If the successor route is not in explored and not in frontier, then heappush the board into frontier with f_score of travelled route.

iNaturalist observations along hiking trails

This tool reads the route of a hike and generates a table of iNaturalist observations along the trails. It also shows the observations and the route of the hike on a map. Moreover, it saves waypoints

7 Nov 11, 2022
Simulation and Parameter Estimation in Geophysics

Simulation and Parameter Estimation in Geophysics - A python package for simulation and gradient based parameter estimation in the context of geophysical applications.

SimPEG 390 Dec 15, 2022
How to use COG's (Cloud optimized GeoTIFFs) with Rasterio

How to use COG's (Cloud optimized GeoTIFFs) with Rasterio According to Cogeo.org: A Cloud Opdtimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at

Marvin Gabler 8 Jul 29, 2022
Record railway train route profile with GNSS tools

Train route profile recording with GNSS technology based on ARDUINO platform Project target Develop GNSS recording tools based on the ARDUINO platform

tomcom 1 Jan 01, 2022
Python library to decrypt Airtag reports, as well as a InfluxDB/Grafana self-hosted dashboard example

Openhaystack-python This python daemon will allow you to gather your Openhaystack-based airtag reports and display them on a Grafana dashboard. You ca

Bezmenov Denys 19 Jan 03, 2023
Google Maps keeps old satellite imagery around for a while – this tool collects what's available for a user-specified region in the form of a GIF.

google-maps-at-88-mph The folks maintaining Google Maps regularly update the satellite imagery it serves its users, but outdated versions of the image

Noah Doersing 111 Sep 27, 2022
This is the antenna performance plotted from tinyGS reception data.

tinyGS-antenna-map This is the antenna performance plotted from tinyGS reception data. See their repository. The code produces a plot that provides Az

Martin J. Levy 14 Aug 21, 2022
GebPy is a Python-based, open source tool for the generation of geological data of minerals, rocks and complete lithological sequences.

GebPy is a Python-based, open source tool for the generation of geological data of minerals, rocks and complete lithological sequences. The data can be generated randomly or with respect to user-defi

Maximilian Beeskow 16 Nov 29, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

34 Dec 27, 2022
ProjPicker (projection picker) is a Python module that allows the user to select all coordinate reference systems (CRSs)

ProjPicker ProjPicker (projection picker) is a Python module that allows the user to select all coordinate reference systems (CRSs) whose extent compl

Huidae Cho 4 Feb 06, 2022
Tool to suck data from ArcGIS Server and spit it into PostgreSQL

chupaESRI About ChupaESRI is a Python module/command line tool to extract features from ArcGIS Server map services. Name? Think "chupacabra" or "Chupa

John Reiser 34 Dec 04, 2022
Constraint-based geometry sketcher for blender

Geometry Sketcher Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like

1.7k Jan 02, 2023
Implementation of Trajectory classes and functions built on top of GeoPandas

MovingPandas MovingPandas implements a Trajectory class and corresponding methods based on GeoPandas. Visit movingpandas.org for details! You can run

Anita Graser 897 Jan 01, 2023
A Jupyter - Leaflet.js bridge

ipyleaflet A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook. Usage Selecting a basemap for a leaflet map: Loading a geojso

Jupyter Widgets 1.3k Dec 27, 2022
geemap - A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and ipywidgets.

A Python package for interactive mapping with Google Earth Engine, ipyleaflet, and folium

Qiusheng Wu 2.4k Dec 30, 2022
pure-Python (Numpy optional) 3D coordinate conversions for geospace ecef enu eci

Python 3-D coordinate conversions Pure Python (no prerequistes beyond Python itself) 3-D geographic coordinate conversions and geodesy. API similar to

Geospace code 292 Dec 29, 2022
Download and process satellite imagery in Python using Sentinel Hub services.

Description The sentinelhub Python package allows users to make OGC (WMS and WCS) web requests to download and process satellite images within your Py

Sentinel Hub 659 Dec 23, 2022
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.

OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street

Geoff Boeing 4k Jan 08, 2023
Spectral decomposition for characterizing long-range interaction profiles in Hi-C maps

Inspectral Spectral decomposition for characterizing long-range interaction prof

Nezar Abdennur 6 Dec 13, 2022
Python module and script to interact with the Tractive GPS tracker.

pyTractive GPS Python module and script to interact with the Tractive GPS tracker. Requirements Python 3 geopy folium pandas pillow usage: main.py [-h

Dr. Usman Kayani 3 Nov 16, 2022