Reliable probability face embeddings

Related tags

Deep LearningProbFace
Overview

ProbFace, arxiv

This is a demo code of training and testing [ProbFace] using Tensorflow. ProbFace is a reliable Probabilistic Face Embeddging (PFE) method. The representation of each face will be an Guassian distribution parametrized by (mu, sigma), where mu is the original embedding and sigma is the learned uncertainty. Experiments show that ProbFace could

  • improve the robustness of PFE.
  • simplify the calculation of the multal likelihood score (MLS).
  • improve the recognition performance on the risk-controlled scenarios.

Usage

Preprocessing

Download the MS-Celeb-1M dataset from insightface or face.evoLVe.PyTorch and decode it using this code

Training

  1. Download the base model ResFace64 and unzip the files under log/resface64.

  2. Modify the configuration files under configfig/ folder.

  3. Start the training:

    python train.py configfig/resface64_msarcface.py
    Start Training
    name: resface64
    # epochs: 12
    epoch_size: 1000
    batch_size: 128
    
    Saving variables...
    Saving metagraph...
    Saving variables...
    [1][1] time: 4.19 a 0.8130 att_neg 2.7123 att_pos 0.9874 atte 1.8354 lr 0.0100 mls 0.6820 regu 0.1267 s_L2 0.0025 s_max 0.4467 s_min 0.2813
    [1][101] time: 37.72 a 0.8273 att_neg 2.9455 att_pos 1.0839 atte 1.8704 lr 0.0100 mls 0.6946 regu 0.1256 s_L2 0.0053 s_max 0.4935 s_min 0.2476
    [1][201] time: 38.06 a 0.8533 att_neg 2.9560 att_pos 1.1092 atte 1.9117 lr 0.0100 mls 0.7208 regu 0.1243 s_L2 0.0063 s_max 0.5041 s_min 0.2505
    [1][301] time: 38.82 a 0.7510 att_neg 2.9985 att_pos 1.0223 atte 1.7441 lr 0.0100 mls 0.6209 regu 0.1231 s_L2 0.0053 s_max 0.4552 s_min 0.2251
    [1][401] time: 37.95 a 0.8122 att_neg 2.9846 att_pos 1.0803 atte 1.8501 lr 0.0100 mls 0.6814 regu 0.1219 s_L2 0.0070 s_max 0.4964 s_min 0.2321
    [1][501] time: 38.42 a 0.7307 att_neg 3.0087 att_pos 1.0050 atte 1.8465 lr 0.0100 mls 0.6005 regu 0.1207 s_L2 0.0076 s_max 0.5249 s_min 0.2181
    [1][601] time: 37.69 a 0.7827 att_neg 3.0395 att_pos 1.0703 atte 1.8236 lr 0.0100 mls 0.6552 regu 0.1195 s_L2 0.0062 s_max 0.4952 s_min 0.2211
    [1][701] time: 37.36 a 0.7410 att_neg 2.9971 att_pos 1.0180 atte 1.8086 lr 0.0100 mls 0.6140 regu 0.1183 s_L2 0.0068 s_max 0.4955 s_min 0.2383
    [1][801] time: 37.27 a 0.6889 att_neg 3.0273 att_pos 0.9755 atte 1.7376 lr 0.0100 mls 0.5635 regu 0.1171 s_L2 0.0065 s_max 0.4773 s_min 0.2481
    [1][901] time: 37.34 a 0.7609 att_neg 2.9962 att_pos 1.0403 atte 1.8056 lr 0.0100 mls 0.6367 regu 0.1160 s_L2 0.0064 s_max 0.4861 s_min 0.2272
    Saving variables...
    --- cfp_fp ---
    testing verification..
    (14000, 96, 96, 3)
    # of images: 14000 Current image: 13952 Elapsed time: 00:00:12
    save /_feature.pkl
    sigma_sq (14000, 1)
    sigma_sq (14000, 1)
    sigma_sq [0.19821654 0.25770819 0.29024169 0.35030219 0.40342696 0.44539295
     0.56343746] percentile [0, 10, 30, 50, 70, 90, 100]
    risk_factor 0.0 risk_threshold 0.5634374618530273 keep_idxes 7000 / 7000 Cosine score acc 0.980429 threshold 0.182809
    risk_factor 0.1 risk_threshold 0.4627984762191772 keep_idxes 6301 / 7000 Cosine score acc 0.983336 threshold 0.201020
    risk_factor 0.2 risk_threshold 0.4453900158405304 keep_idxes 5603 / 7000 Cosine score acc 0.985007 threshold 0.203516
    risk_factor 0.3 risk_threshold 0.4327596127986908 keep_idxes 4904 / 7000 Cosine score acc 0.986134 threshold 0.207834
    

Testing

  • Single Image Comparison We use LFW dataset as an example for single image comparison. Make sure you have aligned LFW images using the previous commands. Then you can test it on the LFW dataset with the following command:
    run_eval.bat

Visualization of Uncertainty

Pre-trained Model

ResFace64

Method Download2 Download2
Base Mode Baidu Drive PW:v800 [Google Drive]TODO
MLS Only Baidu Drive PW:72tt [Google Drive]TODO
MLS + L1 + Triplet Baidu Drive PW:sx8a [Google Drive]TODO
ProbFace Baidu Drive PW:pr0m [Google Drive]TODO

ResFace64(0.5)

Method Download2 Download2
Base Mode Baidu Drive PW:zrkl [Google Drive]TODO
MLS Only Baidu Drive PW:et0e [Google Drive]TODO
MLS + L1 + Triplet Baidu Drive PW:glmf [Google Drive]TODO
ProbFace Baidu Drive PW:o4tn [Google Drive]TODO

Test Results:

Method LFW CFP-FF CALFW AgeDB30 CPLFW CFP-FP Vgg2FP Avg
Base Mode 99.80 99.80 95.93 97.93 92.53 98.04 94.92 96.99
MLS Only 99.80 99.76 95.87 97.35 93.01 98.29 95.26 97.05
MLS + L1 + Triplet 99.85 99.83 96.05 97.93 93.17 98.39 95.36 97.22
ProbFace 99.85 99.80 96.02 97.90 93.53 98.41 95.34 97.26

Acknowledgement

This repo is inspired by Probabilistic-Face-Embeddings

Reference

If you find this repo useful, please consider citing:

@misc{chen2021reliable,
    title={Reliable Probabilistic Face Embeddings in the Wild},
    author={Kai Chen and Qi Lv and Taihe Yi and Zhengming Yi},
    year={2021},
    eprint={2102.04075},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Kaen Chan
Kaen Chan
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Neural network pruning for finding a sparse computational model for controlling a biological motor task.

MothPruning Scientific Overview Originally inspired by biological nervous systems, deep neural networks (DNNs) are powerful computational tools for mo

Olivia Thomas 0 Dec 14, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022