MOT-Tracking-by-Detection-Pipeline - For Tracking-by-Detection format MOT (Multi Object Tracking), is it a framework that separates Detection and Tracking processes?

Overview

MOT-Tracking-by-Detection-Pipeline

Tracking-by-Detection形式のMOT(Multi Object Tracking)について、
DetectionとTrackingの処理を分離して寄せ集めたフレームワークです。



09.MOT.mp4

Usage

デモの実行方法は以下です。

python main.py
  • --device
    カメラデバイス番号の指定
    デフォルト:0
  • --movie
    動画ファイルの指定 ※指定時はカメラデバイスより優先
    デフォルト:指定なし
  • --detector
    Object Detectionのモデル選択
    yolox, efficientdet, ssd, centernet, nanodet, mediapipe_face, mediapipe_hand の何れかを指定
    デフォルト:yolox
  • --tracker
    トラッキングアルゴリズムの選択
    motpy, bytetrack, norfair の何れかを指定
    デフォルト:bytetrack

Direcotry

│  main.py
│  test.mp4
├─Detector
│  │  detector.py
│  └─xxxxxxxx
│      │  xxxxxxxx.py
│      │  config.json
│      │  LICENSE
│      └─model
│          xxxxxxxx.onnx
└─Tracker
    │  tracker.py
    └─yyyyyyyy
        │  yyyyyyyy.py
        │  config.json
        │  LICENSE
        └─tracker

各モデル、トラッキングアルゴリズムを格納しているディレクトリには、
ライセンス条項とコンフィグを同梱しています。

Detector

モデル名 取得元リポジトリ ライセンス 備考
YOLOX Megvii-BaseDetection/YOLOX Apache-2.0 YOLOX-ONNX-TFLite-Sampleにて
ONNX化したモデルを使用
EfficientDet tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
SSD MobileNet v2 FPNLite tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
CenterNet tensorflow/models Apache-2.0 Object-Detection-API-TensorFlow2ONNXにて
ONNX化したモデルを使用
NanoDet RangiLyu/nanodet Apache-2.0 NanoDet-ONNX-Sampleにて
ONNX化したモデルを使用
MediaPipe Face Detection google/mediapipe Apache-2.0 目、鼻、口、耳のキーポイントは未使用
MediaPipe Hands google/mediapipe Apache-2.0 ランドマークから外接矩形を算出し使用

Tracker

アルゴリズム名 取得元リポジトリ ライセンス 備考
motpy wmuron/motpy MIT マルチクラス対応
ByteTrack ifzhang/ByteTrack MIT -
Norfair tryolabs/norfair MIT -

Author

高橋かずひと(https://twitter.com/KzhtTkhs)

License

MOT-Tracking-by-Detection-Pipeline is under MIT License.

※MOT-Tracking-by-Detection-Pipelineのソースコード自体はMIT Licenseでの提供ですが、
各アルゴリズムのソースコードは、それぞれのライセンスに従います。
詳細は各ディレクトリ同梱のLICENSEファイルをご確認ください。

License(Movie)

サンプル動画はNHKクリエイティブ・ライブラリーイタリア ミラノの横断歩道を使用しています。

Owner
KazuhitoTakahashi
KazuhitoTakahashi
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
SFD implement with pytorch

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector Description Meanwhile train hand

Jun Li 251 Dec 22, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023