Systemic Evolutionary Chemical Space Exploration for Drug Discovery

Overview

SECSE


SECSE: Systemic Evolutionary Chemical Space Explorer

plot

Chemical space exploration is a major task of the hit-finding process during the pursuit of novel chemical entities. Compared with other screening technologies, computational de novo design has become a popular approach to overcome the limitation of current chemical libraries. Here, we reported a de novo design platform named systemic evolutionary chemical space explorer (SECSE). The platform was conceptually inspired by fragment-based drug design, that miniaturized a “lego-building” process within the pocket of a certain target. The key of virtual hits generation was then turned into a computational search problem. To enhance search and optimization, human intelligence and deep learning were integrated. SECSE has the potential in finding novel and diverse small molecules that are attractive starting points for further validation.

Tutorials and Usage


  1. Set Environment Variables
    export $SECSE=path/to/SECSE
    if you use AutoDock Vina for docking: (download here)
    export $VINA=path/to/AutoDockVINA
    if you use Gilde for docking (additional installation & license required):
    export $SCHRODINGER=path/to/SCHRODINGER

  2. Give execution permissions to the SECSE directory
    chmod -R +X path/to/SECSE

  3. Input fragments: a tab split .smi file without header. See demo here.

  4. Parameters in config file:
    [DEFAULT]

    • workdir, working directory, create if not exists, otherwise overwrite, type=str
    • fragments, file path to seed fragments, smi format, type=str
    • num_gen, number of generations, type=int
    • num_per_gen, number of molecules generated each generation, type=int
    • seed_per_gen, number of selected seed molecules per generation, default=1000, type=int
    • start_gen, number of staring generation, default=0, type=int
    • docking_program, name of docking program, AutoDock-Vina (input vina) or Glide (input glide) , default=vina, type=str

    [docking]

    • target, protein PDBQT if use AutoDock Vina; Grid file if choose Glide, type=str
    • RMSD, docking pose RMSD cutoff between children and parent, default=2, type=float
    • delta_score, decreased docking score cutoff between children and parent, default=-1.0, type=float
    • score_cutoff, default=-9, type=float

    Parameters when docking by AutoDock Vina:

    • x, Docking box x, type=float
    • y, Docking box y, type=float
    • z, Docking box z, type=float
    • box_size_x, Docking box size x, default=20, type=float
    • box_size_y, Docking box size y, default=20, type=float
    • box_size_z, Docking box size z, default=20, type=float

    [deep learning]

    • mode, mode of deep learning modeling, 0: not use, 1: modeling per generation, 2: modeling overall after all the generation, default=0, type=int
    • dl_per_gen, top N predicted molecules for docking, default=100, type=int
    • dl_score_cutoff, default=-9, type=float

    [properties]

    • MW, molecular weights cutoff, default=450, type=int
    • logP_lower, minimum of logP, default=0.5, type=float
    • logP_upper, maximum of logP, default=7, type=float
    • chiral_center, maximum of chiral center,default=3, type=int
    • heteroatom_ratio, maximum of heteroatom ratio, default=0.35, type=float
    • rotatable_bound_num, maximum of rotatable bound, default=5, type=int
    • rigid_body_num, default=2, type=int

    Config file of a demo case phgdh_demo_vina.ini

  5. Run SECSE
    python $SECSE/run_secse.py --config path/to/config

  6. Output files

    • merged_docked_best_timestamp_with_grow_path.csv: selected molecules and growing path
    • selected.sdf: 3D conformers of all selected molecules

Dependencies


GNU Parallel installation

numpy~=1.20.3, pandas~=1.3.3, pandarallel~=1.5.2, tqdm~=4.62.2, biopandas~=0.2.9, openbabel~=3.1.1, rdkit~=2021.03.5, chemprop~=1.3.1, torch~=1.9.0+cu111

Citation


Lu, C.; Liu, S.; Shi, W.; Yu, J.; Zhou, Z.; Zhang, X.; Lu, X.; Cai, F.; Xia, N.; Wang, Y. Systemic Evolutionary Chemical Space Exploration For Drug Discovery. ChemRxiv 2021. This content is a preprint and has not been peer-reviewed.

License


SECSE is released under Apache License, Version 2.0.

You might also like...
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer  from NNAISENSE.
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

Comments
  • Problem running demo

    Problem running demo

    Hi!

    When I try to run the demo with the command below. python $SECSE/run_secse.py --config demo/phgdh_demo_vina.ini

    It generates pandas.errors.EmptyDataError: No columns to parse from file, what should I do to solve it? Thank you!

    Here is the output

    **************************************************************************************** 
          ____    _____    ____   ____    _____ 
         / ___|  | ____|  / ___| / ___|  | ____|
         \___ \  |  _|   | |     \___ \  |  _|  
          ___) | | |___  | |___   ___) | | |___ 
         |____/  |_____|  \____| |____/  |_____|
    /home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/core/generic.py:2882: UserWarning: The spaces in these column names will not be changed. In pandas versions < 0.14, spaces were converted to underscores.
     method=method,
    Table 'G-001' already exists.
    
    ******************************************************************
    Input fragment file: /home/bruce/Work/CADD/SECSE/code/demo/demo_1020.smi
    Target grid file: /home/bruce/Work/CADD/SECSE/code/demo/PHGDH_6RJ3_for_vina.pdbqt
    Workdir: /home/bruce/Work/CADD/SECSE/code/res/
    
    
    ************************************************** 
    Generation  0 ...
    Step 1: Docking with Autodock Vina ...
    /home/bruce/Work/CADD/SECSE/code/secse/evaluate/ligprep_vina_parallel.sh /home/bruce/Work/CADD/SECSE/code/res/generation_0 /home/bruce/Work/CADD/SECSE/code/demo/demo_1020.smi /home/bruce/Work/CADD/SECSE/code/demo/PHGDH_6RJ3_for_vina.pdbqt 20.9 -10.4 3.0 20.0 20.0 25.0 10
    find /home/bruce/Work/CADD/SECSE/code/res/generation_0/sdf_files -name "*sdf" | xargs -n 100 cat > /home/bruce/Work/CADD/SECSE/code/res/generation_0/docking_outputs_with_score.sdf
    Docking time cost: 0.12 min.
    Step 2: Ranking docked molecules...
    9 cmpds after evaluate
    The evaluate score cutoff is: -9.0
    9 final seeds.
    
    ************************************************** 
    Generation  1 ...
    Step 1: Mutation
    No rule class:  B-001
    No rule class:  G-003
    No rule class:  G-004
    No rule class:  G-005
    No rule class:  G-006
    No rule class:  G-007
    No rule class:  M-001
    No rule class:  M-002
    No rule class:  M-003
    No rule class:  M-004
    No rule class:  M-005
    No rule class:  M-006
    No rule class:  M-007
    No rule class:  M-008
    No rule class:  M-009
    No rule class:  M-010
    No rule class: G-002
    Step 2: Filtering all mutated mols
    sh /home/bruce/Work/CADD/SECSE/code/secse/growing/filter_parallel.sh /home/bruce/Work/CADD/SECSE/code/res/generation_1 1 demo/phgdh_demo_vina.ini 10
    Filter runtime: 0.00 min.
    Traceback (most recent call last):
     File "/home/bruce/Work/CADD/SECSE/code/secse/run_secse.py", line 80, in <module>
       main()
     File "/home/bruce/Work/CADD/SECSE/code/secse/run_secse.py", line 65, in main
       workflow.grow()
     File "/home/bruce/Work/CADD/SECSE/code/secse/grow_processes.py", line 208, in grow
       self._filter_df = pd.read_csv(os.path.join(self.workdir_now, "filter.csv"), header=None)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/util/_decorators.py", line 311, in wrapper
       return func(*args, **kwargs)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 586, in read_csv
       return _read(filepath_or_buffer, kwds)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 482, in _read
       parser = TextFileReader(filepath_or_buffer, **kwds)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 811, in __init__
       self._engine = self._make_engine(self.engine)
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/readers.py", line 1040, in _make_engine
       return mapping[engine](self.f, **self.options)  # type: ignore[call-arg]
     File "/home/bruce/Downloads/Softwares/Anaconda/envs/secse/lib/python3.7/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 69, in __init__
       self._reader = parsers.TextReader(self.handles.handle, **kwds)
     File "pandas/_libs/parsers.pyx", line 549, in pandas._libs.parsers.TextReader.__cinit__
    pandas.errors.EmptyDataError: No columns to parse from file
    
    opened by BW15061999 17
  • Question about running the demo code

    Question about running the demo code

    Hi authors,

    I have tried to run your demo code in README.md, but got some errors.

    Command

    python /home/xxx/workspace/off-SECSE/secse/run_secse.py --config ./config.ini
    

    Output

     **************************************************************************************** 
           ____    _____    ____   ____    _____ 
          / ___|  | ____|  / ___| / ___|  | ____|
          \___ \  |  _|   | |     \___ \  |  _|  
           ___) | | |___  | |___   ___) | | |___ 
          |____/  |_____|  \____| |____/  |_____|
    
    ******************************************************************
    Input fragment file: /home/xxx/workspace/off-SECSE/fy-run/demo001/ligand.smi
    Target grid file: /home/xxx/workspace/off-SECSE/fy-run/demo001/receptor.pdbqt
    Workdir: /home/xxx/workspace/off-SECSE/fy-run/demo001/
    
    Step 1: Docking with Autodock Vina ...
    /home/xxx/workspace/off-SECSE/secse/evaluate/ligprep_vina_parallel.sh /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0 /home/xxx/workspace/off-SECSE/fy-run/demo001/ligand.smi /home/t-yafan/workspace/off-SECSE/fy-run/demo001/receptor.pdbqt 20.9 -10.4 3.0 20.0 20.0 25.0 10
    find /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0/sdf_files -name "*sdf" | xargs -n 100 cat > /home/xxx/workspace/off-SECSE/fy-run/demo001/generation_0/docking_outputs_with_score.sdf
    Docking time cost: 0.11 min.
    Step 2: Ranking docked molecules...
    9 cmpds after evaluate
    The evaluate score cutoff is: -9.0
    9 final seeds.
    
     ************************************************** 
    Generation  1 ...
    Step 1: Mutation
    Traceback (most recent call last):
      File "/home/xxx/workspace/off-SECSE/secse/run_secse.py", line 70, in <module>
        main()
      File "/home/xxx/workspace/off-SECSE/secse/run_secse.py", line 55, in main
        workflow.grow()
      File "/home/xxx/workspace/off-SECSE/secse/grow_processes.py", line 159, in grow
        header = mutation_df(self.winner_df, self.workdir, self.cpu_num, self.gen)
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 166, in mutation_df
        mutation = Mutation(5000, workdir)
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 29, in __init__
        self.load_common_rules()
      File "/home/xxx/workspace/off-SECSE/secse/growing/mutation/mutation.py", line 50, in load_common_rules
        c.execute(sql)
    sqlite3.OperationalError: no such table: B-001
    

    It seems that the file secse/growing/mutation/rules_demo.db is missing in the repo. How can I fix it?

    Thanks!

    opened by fyabc 5
  • All dockings do not work because there's no gridding process.

    All dockings do not work because there's no gridding process.

    Hi, I was trying out the repo when I realised that neither the autodock nor glide is able to run because there was no gridding process, resulting in no grid files. >.<

    opened by yipy0005 3
Releases(v1.1.0)
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022