On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

Overview

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing Valentin Khrulkov, Leyla Mirvakhabova, Ivan Oseledets, Artem Babenko

Overview

We replace linear shifts commonly used for image editing with a flow of a trainable Neural ODE in the latent space.

w' = NN(w; \theta)

The RHS of this Neural ODE is trained end-to-end using pre-trained attribute regressors by enforcing

  • change of the desired attribute;
  • invariance of remaining attributes.

Installation and usage

Data

Data required to use the code is available at this dropbox link (2.5Gb).

Path Description
data data hosted on Dropbox
  ├  models pretrained GAN models and attribute regressors
  ├  log pretrained nonlinear edits (Neural ODEs of depth 1) for a variety of attributes on CUB, FFHQ, Places2
  ├  data_to_rectify 100,000 precomputed pairs (w, R[G[w]]); i.e., style vectors and corresponding semantic attributes
  ├  configs parameters of StyleGAN 2 generators for each dataset (n_mlp, channel_width, etc)
    └  inverses precomputed inverses (elements of W-plus) for sample FFHQ images

To download and unpack the data run get_data.sh.

Training

We used torch 1.7 for training; however, the code should work for lower versions as well. An example training script to rectify all the attributes:

CUDA_VISIBLE_DEVICES=0 python train_ode.py --dataset ffhq \
--nb-iter 5000 \
--alpha 8 \
--depth 1

For selected attributes:

CUDA_VISIBLE_DEVICES=0 python train_ode.py --dataset ffhq \
--nb-iter 5000 \
--alpha 8 \
--dir 4 8 15 16 23 32 \
--depth 1

Custom dataset

For training on a custom dataset, you have to provide

  • Generator and attribute regressor weights
  • a dictionary {dataset}_all.pt (stored in data_to_rectify). It has the form {"ws": ws, "labels" : labels} with ws being a torch.Tensor of size N x 512 and labels is a torch.Tensor of size N x D, with D being the number of semantic factors. labels should be constructed by evaluating the corresponding attribute regressor on synthetic images generator(ws[i]). It is used to sample batches for training.

Visualization

Please see explore.ipynb for example visualizations. lib.utils.py contains a utility wrapper useful for building and loading the Neural ODE models (FlowFactory).

Restoring from checkpoint

= 1 corresponds to an MLP with depth layers odeblock.load_state_dict(...) # some style vector (generator.style(z)) w0 = ... # You can directly call odeint with torch.no_grad(): odeint(odeblock.odefunc, w0, torch.FloatTensor([0, 1]).to(device)) # Or utilize the wrapper flow = LatentFlow(odefunc=odeblock.odefunc, device=device, name="Bald") flow.flow(w=w0, t=1) # To flow real images: w = torch.load("inverses/actors.pt").to(device) flow.flow(w, t=6, truncate_real=6) # truncate_real specifies which portion of a W-plus vector to modify # (e.g., first 6 our of 14 vectors) ">
import torch
from lib.utils import FlowFactory, LatentFlow
from torchdiffeq import odeint_adjoint as odeint
device = torch.device("cuda")
flow_factory = FlowFactory(dataset="ffhq", device=device)
odeblock = flow_factory._build_odeblock(depth=1)
# depth = -1 corresponds to a constant right hand side (w' = c)
# depth >= 1 corresponds to an MLP with depth layers
odeblock.load_state_dict(...)

# some style vector (generator.style(z))
w0 = ...

# You can directly call odeint
with torch.no_grad():
    odeint(odeblock.odefunc, w0, torch.FloatTensor([0, 1]).to(device))

# Or utilize the wrapper 
flow = LatentFlow(odefunc=odeblock.odefunc, device=device, name="Bald")
flow.flow(w=w0, t=1)

# To flow real images:
w = torch.load("inverses/actors.pt").to(device)
flow.flow(w, t=6, truncate_real=6)
# truncate_real specifies which portion of a W-plus vector to modify
# (e.g., first 6 our of 14 vectors)

A sample script to generate a movie is

CUDA_VISIBLE_DEVICES=0 python make_movie.py --attribute Bald --dataset ffhq

Examples

FFHQ

Bald Goatee Wavy_Hair Arched_Eyebrows
Bangs Young Blond_Hair Chubby

Places2

lush rugged fog

Citation

Coming soon.

Credits

Owner
Valentin Khrulkov
PhD student
Valentin Khrulkov
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023