Improved Fitness Optimization Landscapes for Sequence Design

Overview

ReLSO

Improved Fitness Optimization Landscapes for Sequence Design

Description


In recent years, deep learning approaches for determining protein sequence-fitness relationships have gained traction. Advances in high-throughput mutagenesis, directed evolution, and next-generation sequencing have allowed for the accumulation of large amounts of labelled fitness data and consequently, attracted the application of various deep learning methods. Although these methods learn an implicit fitness landscape, there is little work on using the latent encoding directly for protein sequence optimization. Here we show that this latent space representation of a fitness landscape can be made very amenable to latent space optimization through a joint-training process. We also show that this encoding strategy which also provides improvements to generalization over more traditional training strategies. We apply our approach to several biological contexts and show that latent space optimization in a smooth learned folding landscape allows for more accurate and efficient optimization of protein sequences.

Citation

This repo accompanies the following publication:

Egbert Castro, Abhinav Godavarthi, Julien Rubinfien, Smita Krishnaswamy. Guided Generative Protein Design using Regularized Transformers. Nature Machine Intelligence, in review (2021).

How to run


First, install dependencies

# clone project   
git clone https://github.com/KrishnaswamyLab/ReLSO-Guided-Generative-Protein-Design-using-Regularized-Transformers.git


# install project   
cd ReLSO-Guided-Generative-Protein-Design-using-Regularized-Transformers 
pip install -e .   
pip install -r requirements.txt

Usage

Training models

# run training script
python train_relso.py  --data gifford

*note: if arg option is not relevant to current model selection, it will not be used. See init method of each model to see what's used.

available dataset args:

    gifford, GB1_WU, GFP, TAPE

available auxnetwork args:

    base_reg

Original data sources

You might also like...
An implementation of a sequence to sequence neural network using an encoder-decoder
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Sequence lineage information extracted from RKI sequence data repo
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

Aircraft design optimization made fast through modern automatic differentiation
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Racing line optimization algorithm in python that uses Particle Swarm Optimization.
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Puzzle-CAM: Improved localization via matching partial and full features.
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Comments
  • Conda env create not working

    Conda env create not working

    When I type in the command as instructed in how to run, I get this error:

    Warning: you have pip-installed dependencies in your environment file, but you do not list pip itself as one of your conda dependencies. Conda may not use the correct pip to install your packages, and they may end up in the wrong place. Please add an explicit pip dependency. I'm adding one for you, but still nagging you. Collecting package metadata (repodata.json): done Solving environment: failed

    ResolvePackageNotFound:

    • libcxx==12.0.0=h2f01273_0
    • python==3.10.4=hdfd78df_0
    • openssl==1.1.1q=hca72f7f_0
    • ncurses==6.3=hca72f7f_3
    • readline==8.1.2=hca72f7f_1
    • bzip2==1.0.8=h1de35cc_0
    • ca-certificates==2022.07.19=hecd8cb5_0
    • xz==5.2.5=hca72f7f_1
    • libffi==3.3=hb1e8313_2
    • zlib==1.2.12=h4dc903c_2
    • sqlite==3.38.5=h707629a_0
    • tk==8.6.12=h5d9f67b_0
    opened by Pixelatory 1
  • May the internal information of gifford data leads to a bias results given by model?

    May the internal information of gifford data leads to a bias results given by model?

    I'm very intersted in your work and analysize the gifford data. Firstly, I use the CD-HIT( a Cluster tool) split into different clusters.Then, I chose the sequence (comes the Clsuter-1(a cluster subset contaiing similar sequences given by CD-HIT)) with highest enrich value as a baseline, and focus on the residue difference between it and others sequences. Very interstingly, i find those sequences that containg 2 or 3 different residues compared to baseline sequence, usually have high enrichments. In Top-100 high enrichments, it can at 65%. As i know, your work is a multitask that both focus on generation and prediction. **I wonder that whether the JT-VAE tends to produce the new sequences that different from the corresponding baseline sequence with highest enrichment about 2 or 3 different residues , and the prediction neural network may think such sequences are good results.**It means that the model only need to realize the fact that compared to high enrich sequnces,the new sequnces contain 2 or 3 different residues is good enough. Beacuse i not find your results, i hope you can give me some advices.

    opened by chengyunzhang 0
Releases(v1.0)
Owner
Krishnaswamy Lab
Krishnaswamy Lab
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
git《Tangent Space Backpropogation for 3D Transformation Groups》(CVPR 2021) GitHub:1]

LieTorch: Tangent Space Backpropagation Introduction The LieTorch library generalizes PyTorch to 3D transformation groups. Just as torch.Tensor is a m

Princeton Vision & Learning Lab 482 Jan 06, 2023
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022