Automatic meme generation model using Tensorflow Keras.

Overview

Memefly

You can find the project at MemeflyAI.

Contributors

Nick Buukhalter Harsh Desai Han Lee

MIT Python Tensorflow Tensorflow Serving Docker

Project Overview

Trello Board

Product Canvas

Automatic meme generation model using Tensorflow Keras. Model is Dockerized and served as a REST API with FastAPI/uvicorn ASGI endpoint. A separate serving model serving is done with a combination of FastAPI/uvicorn ASGI endpoint with models served using Tensorflow Serving on Sagemaker.

Tech Stack

Python Packages

  • Numpy
  • Pandas
  • Tensorflow
  • FastAPI
  • Selenium

DevOps

  • Tensorflow Serving
  • Docker
  • MySQL
  • MongoDB
  • AWS ECR
  • AWS Elastic Beanstalk
  • AWS S3
  • AWS Sagemaker

Architecture

memefly_architecture

Predictions

We used an encoder-decoder architecture for the meme generation task. Pre-trained Inception V3 architecture and weights are used as the encoder to extract embeddings from an input image. At the same time, we encode the texts into text embeddings and concat them together with image embeddings. For the decoder, we used GRU to to map the image and text embeddings to predict the next word in the text string.

At training time, we repeat the same image embeddings as input and send in text sequences in order, e.g., 0. this, 1. this is, 2. this is a, 3. this is a sequence. The model will try to predict the next word in the sequence given the input image embedding and text embeddings. We denote the beginning and the end of a text sequence with startseq and endseq.

At inferencing time, we send in image embeddings and the seed token startseq to the model, and then repeatly send in the image embeddings and the prediction output of the previous timestep, until either we see endseq or reach maximum sentence length. To improve the quality of the output, we used beam search to greedily select the best N sentences. But it has to be noted that beam search is neither optimal nor complete algorithm.

To increase varieties, we tried 1) adding Guassian noise to the input image and 2) choosing top N sentence scores using beam search.

The architecture is summarized here:

architecture

In-sample Meme

in-sample

Out-of-sample Meme

out-of-sample

Batch Example Outputs

memes

Explanatory Variables

  • Image
  • Text

Data Sources

Please see Data Engineering for details.

Python Notebooks

Training Notebook

Inferencing Notebook

How to connect to the web API

Please see Machine Learning Engineering - Deployment for details.

How to connect to the data API

Please see Data Engineering for details.

Contributing

When contributing to this repository, please first discuss the change you wish to make via issue, email, or any other method with the owners of this repository before making a change.

Please note we have a code of conduct. Please follow it in all your interactions with the project.

Issue/Bug Request

If you are having an issue with the existing project code, please submit a bug report under the following guidelines:

  • Check first to see if your issue has already been reported.
  • Check to see if the issue has recently been fixed by attempting to reproduce the issue using the latest master branch in the repository.
  • Create a live example of the problem.
  • Submit a detailed bug report including your environment & browser, steps to reproduce the issue, actual and expected outcomes, where you believe the issue is originating from, and any potential solutions you have considered.

Feature Requests

We would love to hear from you about new features which would improve this app and further the aims of our project. Please provide as much detail and information as possible to show us why you think your new feature should be implemented.

Pull Requests

If you have developed a patch, bug fix, or new feature that would improve this app, please submit a pull request. It is best to communicate your ideas with the developers first before investing a great deal of time into a pull request to ensure that it will mesh smoothly with the project.

Remember that this project is licensed under the MIT license, and by submitting a pull request, you agree that your work will be, too.

Pull Request Guidelines

  • Ensure any install or build dependencies are removed before the end of the layer when doing a build.
  • Update the README.md with details of changes to the interface, including new plist variables, exposed ports, useful file locations and container parameters.
  • Ensure that your code conforms to our existing code conventions and test coverage.
  • Include the relevant issue number, if applicable.
  • You may merge the Pull Request in once you have the sign-off of two other developers, or if you do not have permission to do that, you may request the second reviewer to merge it for you.

Attribution

These contribution guidelines have been adapted from this good-Contributing.md-template.

Documentation

See Data Engineering for details on the data engineering of our project.

See Machine Learning Engineering - Training for details on the training part of our project.

See Machine Learning Engineering - Deployment for details on the deployment of our project.

Owner
BloomTech Labs
We are the Bloom Institute of Technology's Labs Organization, hosting the products our learners build during their time in BloomTech Labs.
BloomTech Labs
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022