[ICCV 2021] Learning A Single Network for Scale-Arbitrary Super-Resolution

Related tags

Deep LearningArbSR
Overview

ArbSR

Pytorch implementation of "Learning A Single Network for Scale-Arbitrary Super-Resolution", ICCV 2021

[Project] [arXiv]

Highlights

  • A plug-in module to extend a baseline SR network (e.g., EDSR and RCAN) to a scale-arbitrary SR network with small additional computational and memory cost.
  • Promising results for scale-arbitrary SR (both non-integer and asymmetric scale factors) while maintaining the state-of-the-art performance for SR with integer scale factors.

Demo

gif

Motivation

Although recent CNN-based single image SR networks (e.g., EDSR, RDN and RCAN) have achieved promising performance, they are developed for image SR with a single specific integer scale (e.g., x2, x3, x4). In real-world applications, non-integer SR (e.g., from 100x100 to 220x220) and asymmetric SR (e.g., from 100x100 to 220x420) are also necessary such that customers can zoom in an image arbitrarily for better view of details.

Overview

overview

Requirements

  • Python 3.6
  • PyTorch == 1.1.0
  • numpy
  • skimage
  • imageio
  • cv2

Train

1. Prepare training data

1.1 Download DIV2K training data (800 training images) from DIV2K dataset or SNU_CVLab.

1.2 Cd to ./utils and run gen_training_data.m in Matlab to prepare HR/LR images in your_data_path as belows:

your_data_path
└── DIV2K
	├── HR
		├── 0001.png
		├── ...
		└── 0800.png
	└── LR_bicubic
		├── X1.10
			├── 0001.png
			├── ...
			└── 0800.png
		├── ...
		└── X4.00_X3.50
			├── 0001.png
			├── ...
			└── 0800.png

2. Begin to train

Run ./main.sh to train on the DIV2K dataset. Please update dir_data in the bash file as your_data_path.

Test

1. Prepare test data

1.1 Download benchmark datasets (e.g., Set5, Set14 and other test sets).

1.2 Cd to ./utils and run gen_test_data.m in Matlab to prepare HR/LR images in your_data_path as belows:

your_data_path
└── benchmark
	├── Set5
		├── HR
			├── baby.png
			├── ...
			└── woman.png
		└── LR_bicubic
			├── X1.10
				├── baby.png
				├── ...
				└── woman.png
			├── ...
			└── X4.00_X3.50
				├── baby.png
				├── ...
				└── woman.png
	├── Set14
	├── B100
	├── Urban100
	└── Manga109
		├── HR
			├── AisazuNihalrarenai.png
			├── ...
			└── YouchienBoueigumi.png
		└── LR_bicubic
			├── X1.10
				├── AisazuNihalrarenai.png
				├── ...
				└── YouchienBoueigumi.png
			├── ...
			└── X4.00_X3.50
				├── AisazuNihalrarenai.png
				├── ...
				└── YouchienBoueigumi.png

2. Begin to test

Run ./test.sh to test on benchmark datasets. Please update dir_data in the bash file as your_data_path.

Quick Test on An LR Image

Run ./quick_test.sh to enlarge an LR image to an arbitrary size. Please update dir_img in the bash file as your_img_path.

Visual Results

1. SR with Symmetric Scale Factors

non-integer

2. SR with Asymmetric Scale Factors

asymmetric

3. SR with Continuous Scale Factors

Please try our interactive viewer.

Citation

@InProceedings{Wang2020Learning,
  title={Learning A Single Network for Scale-Arbitrary Super-Resolution},
  author={Longguang Wang, Yingqian Wang, Zaiping Lin, Jungang Yang, Wei An, and Yulan Guo},
  booktitle={ICCV},
  year={2021}
}

Acknowledgements

This code is built on EDSR (PyTorch) and Meta-SR. We thank the authors for sharing the codes.

Owner
Longguang Wang
Longguang Wang
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022