Tracing and Observability with OpenFaaS

Overview

Tracing and Observability with OpenFaaS

Today we will walk through how to add OpenTracing or OpenTelemetry with Grafana's Tempo.

For this walk-through we will need several CLI toosl:

  • kind
  • helm
  • kubectl
  • faas-cli

The simplest way to get going is to use arkade to install each of these

arkade get kubectl
arkade get kind
arkade get helm
arkade get faas-cli

Create a cluster

We will use KinD to create our Kubernetes cluster, but, before we start our test cluster, we want to customize our cluster to make it a little easier to work with by exposing port 80 to our localhost. We will use 80 for the ingress to our functions, create the following file as cluster.yaml

kind: Cluster
apiVersion: kind.x-k8s.io/v1alpha4
nodes:
  - role: control-plane
    kubeadmConfigPatches:
      - |
        kind: InitConfiguration
        nodeRegistration:
          kubeletExtraArgs:
            node-labels: "ingress-ready=true"
    extraPortMappings:
      - containerPort: 30080
        hostPort: 80
        protocol: TCP
      - containerPort: 443
        hostPort: 443
        protocol: TCP
      - containerPort: 31112 # this is the NodePort created by the helm chart
        hostPort: 8080 # this is your port on localhost
        protocol: TCP

Now start the cluster using

kind create cluster --name of-tracing --config=cluster.yaml

Install the required apps

Now we can install the usual components we need

Tempo and Grafana

First we start with Tempo and Grafana so that the tracing collector service is available for the other services we will install:

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update

Now create the following values file

# grafana-values.yaml
env:
  GF_AUTH_ANONYMOUS_ENABLED: true
  GF_AUTH_ANONYMOUS_ORG_ROLE: "Admin"
  GF_AUTH_DISABLE_LOGIN_FORM: true

grafana.ini:
  server:
    domain: monitoring.openfaas.local
    root_url: "%(protocol)s://%(domain)s/grafana"
    serve_from_sub_path: true

datasources:
  datasources.yaml:
    apiVersion: 1

    datasources:
      - name: Tempo
        type: tempo
        access: proxy
        orgId: 1
        url: http://tempo:3100
        isDefault: false
        version: 1
        editable: false
        uid: tempo
      - name: Loki
        type: loki
        access: proxy
        url: http://loki:3100
        isDefault: true
        version: 1
        editable: false
        uid: loki
        jsonData:
          derivedFields:
            - datasourceUid: tempo
              matcherRegex: (?:traceID|trace_id|traceId|traceid=(\w+))
              url: "$${__value.raw}"
              name: TraceID

This will do several things for us:

  1. configure the Grafana UI to handle the sub-path prefix /grafana
  2. configure the Tempo data source, this is where our traces will be queried from
  3. configure the Loki data source, this is where our logs come from
  4. finally, as part of the Loki configuration, we setup the derived field TraceID, which allows Loki to parse the trace id from the logs turn it into a link to Tempo.

Now, we can install Tempo and then Grafana

helm upgrade --install tempo grafana/tempo
helm upgrade -f grafana-values.yaml --install grafana grafana/grafana

NOTE the Grafana Helm chart does expose Ingress options that we could use, but they currently do not generate a valid Ingress spec to use with the latest nginx-ingress, specifically, it is missing an incressClhelm upgrade -f grafana-values.yaml --install grafana grafana/grafana. We will handle this later, below.

Nginx

First we want to enable Nginx to generate incoming tracing spans. We are going to enable this globally in our Nginx installation by using the config option

arkade install ingress-nginx \
    --set controller.config.enable-opentracing='true' \
    --set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
    --set controller.hostPort.enabled='true' \
    --set controller.service.type=NodePort \
    --set controller.service.nodePorts.http=30080 \
    --set controller.publishService.enabled='false' \
    --set controller.extraArgs.publish-status-address=localhost \
    --set controller.updateStrategy.rollingUpdate.maxSurge=0 \
    --set controller.updateStrategy.rollingUpdate.maxUnavailable=1 \
    --set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

Most of these options are specific the fact that we are installing in KinD. The settings that are important to our tracing are these three

--set controller.config.enable-opentracing='true' \
--set controller.config.jaeger-collector-host=tempo.default.svc.cluster.local \
--set controller.config.log-format-upstream='$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" $request_length $request_time [$proxy_upstream_name] [$proxy_alternative_upstream_name] $upstream_addr $upstream_response_length $upstream_response_time $upstream_status $req_id traceId $opentracing_context_uber_trace_id'

The first two options enable tracing and send the traces to our Tempo collector. The last option configures the nginx logs to include the trace ID in the logs. In general, I would recommend putting the logs into logfmt structure, in short, usingkey=value. This is automatically parsed into fields by Loki and it is much easier to read in it's raw form. Unfortunately, at this time, arkade will not parse --set values with an equal sign. Using

--set controller.config.log-format-upstream='remote_addr=$remote_addr user=$remote_user ts=$time_local request="$request" status=$status body_bytes=$body_bytes_sent referer="$http_referer" user_agent="$http_user_agent" request_length=$request_length duration=$request_time upstream=$proxy_upstream_name upstream_addr=$upstream_addr upstream_resp_length=$upstream_response_length upstream_duration=$upstream_response_time upstream_status=$upstream_status traceId=$opentracing_context_uber_trace_id'

will produce the error Error: incorrect format for custom flag

Let's expose our Grafana installation! Create this file as grafana-ing.yaml

# grafana-ing.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: grafana
  namespace: default
spec:
  ingressClassName: nginx
  rules:
    - host: monitoring.openfaas.local
      http:
        paths:
          - backend:
              service:
                name: grafana
                port:
                  number: 80
            path: /grafana
            pathType: Prefix

and apply it to the cluster

kubectl apply -f grafana-ing.yaml

Verifying the ingress and grafana

Now, let's verify that things are working,

  1. edit your /etc/hosts file to include

    127.0.0.1 gateway.openfaas.local
    127.0.0.1 monitoring.openfaas.local
    
  2. Now open http://monitoring.openfaas.local

  3. You can explore the logs from nginx, using the Loki query

    {app_kubernetes_io_name="ingress-nginx"}
    

    use this link to open the query in your Grafana.

OpenFaaS

Now that we are prepared to monitor our applications, let's install OpenFaaS and and some functions

arkade install openfaas -a=false --function-pull-policy=IfNotPresent --set ingress.enabled='true'
arkade install openfaas-loki

Because we exposed port 8080 when we setup the Cluster and disabled auth when we installed OpenFaaS, we can start using faas-cli right away

$ faas-cli store deploy nodeinfo

Deployed. 202 Accepted.
URL: http://127.0.0.1:8080/function/nodeinfo

But, we can also use the OpenFaaS UI at http://gateway.openfaas.local

Let's generate some data by invoking the function

echo "" | faas-cli invoke nodeinfo

In the Grafana UI, you can see the logs using the query {faas_function="nodeinfo"}, use this link.

Creating traces from your function

Unfortunately, the OpenFaaS gateway does not produces traces like nginx, so right now we only get a very high level overview from our traces. Nginx will show us the timing as well as the request URL and response status code.

Fortunately, all of the request headers are correctly forwarded to our functions, most importantly this includes the tracing headers generated by Nginx. This means we provide more details

This example will use the Python 3 Flask template and OpenTelemetry.

Setup

  1. Pull the function template using

    faas-cli template store pull python3-flask
  2. Initialize the app is-it-down

    faas-cli new is-it-down --lang python3-flask
    mv is-it-down.yml stack.yml
  3. Now, set up our python dependencies, add this to the requirements.txt

    opentelemetry-api==1.7.1
    opentelemetry-exporter-otlp==1.7.1
    opentelemetry-instrumentation-flask==0.26b1
    opentelemetry-instrumentation-requests==0.26b1
    opentelemetry-sdk==1.7.1
    requests==2.26.0
    
  4. Now the implementation

Owner
Lucas Roesler
I am a senior engineer at Contiamo and an ex-mathematician. I have worked on web apps, image analysis, machine learning problems, and pure math research
Lucas Roesler
Unfinished Python library based on ndspy, for Zelda: Phantom Hourglass and Spirit Tracks.

zed An unfinished library and toolset by me, for viewing and editing files from The Legend of Zelda: Phantom Hourglass and The Legend of Zelda: Spirit

4 Oct 13, 2022
A python package that computes an optimal motion plan for approaching a red light

redlight_approach redlight_approach is a Python package that computes an optimal motion plan during traffic light approach. RLA_demo.mov Given the par

Jonathan Roy 4 Oct 27, 2022
This is a simple leaderboard for 30 days of Google Cloud program for students of ASIET

30daysleaderboard #Hacktoberfest - Please don't make changes in readme file. Only improvement in the project will be accepted. Update - Now if you run

5 Oct 29, 2021
Test for using pyIIIFpres for rara magnetica project

raramagnetica_pyIIIFpres Test for using pyIIIFpres for rara magnetica project. This test show how to use pyIIIFpres for creating mannifest compliant t

Giacomo Marchioro 1 Dec 03, 2021
💘 Write any Python with 9 Characters: e,x,c,h,r,(,+,1,)

💘 PyFuck exchr(+1) PyFuck is a strange playful code. It uses only nine different characters to write Python3 code. Inspired by aemkei/jsfuck Example

Satoki 10 Dec 25, 2022
Object-data mapper and advanced query manager for non relational databases

Object data mapper and advanced query manager for non relational databases. The data is owned by different, configurable back-end databases and it is

Luca Sbardella 121 Aug 11, 2022
Download and archive entire usenet newsgroups over NNTP.

Usenet Archiving Tool This code is for archiving Usenet discussions, not downloading files. Newsgroup posts are saved under the authors name and email

Corey White 2 Dec 23, 2021
Team10 backend - A service which accepts a VRM (Vehicle Registration Mark)

GreenShip - API A service which accepts a VRM (Vehicle Registration Mark) and re

3D Hack 1 Jan 21, 2022
EFB Docker image with efb-telegram-master and efb-wechat-slave

efb-wechat-docker EFB Docker image with efb-telegram-master and efb-wechat-slave Features Container run by non-root user. Support add environment vari

Haukeng 1 Nov 10, 2022
uMap lets you create maps with OpenStreetMap layers in a minute and embed them in your site.

uMap project About uMap lets you create maps with OpenStreetMap layers in a minute and embed them in your site. Because we think that the more OSM wil

771 Dec 29, 2022
India Today Astrology App

India Today Astrology App Introduction This repository contains the code for the Backend setup of the India Today Astrology app as a part of their rec

Pranjal Pratap Dubey 4 May 07, 2022
Hspice-Wave-Generator is a tool used to quickly generate stimuli souces of hspice format

Hspice-Wave-Generator is a tool used to quickly generate stimuli souces of hspice format. All the stimuli sources are based on `pwl` function of HSPICE and the specific complex operations of writing

3 Aug 02, 2022
DNA Storage Simulator that analyzes and simulates DNA storage

DNA Storage Simulator This monorepository contains code for a research project by Mayank Keoliya and supervised by Djordje Jevdjic, that analyzes and

Mayank Keoliya 3 Sep 25, 2022
Simply create JIRA releases based on your github releases

Simply create JIRA releases based on your github releases

8 Jun 17, 2022
Additional useful operations for Python

Pyteal Extensions Additional useful operations for Python Available Operations MulDiv64: calculate m1*m2/d with no overflow on multiplication (TEAL 3+

Ulam Labs 11 Dec 14, 2022
Python programming language Test

Exercise You are tasked with creating a data-processing app that pre-processes and enriches the data coming from crawlers, with the following requirem

Monirul Islam Khan 1 Dec 13, 2021
Project Interface For nextcord-ext

Project Interface For nextcord-ext

nextcord-ext 1 Nov 13, 2021
RecurrentArchitectures - See the accompanying blog post

Why this? What is the goal? The goal of this repository is to write all the recurrent architectures from scratch in tensorflow for learning purposes.

Debajyoti Datta 9 Feb 06, 2022
How to create the game Rock, Paper, Scissors in Python

Rock, Paper, Scissors! If you want to learn how to do interactive games using Python, then this is great start for you. In this code, You will learn h

SplendidSpidey 1 Dec 18, 2021
Experiments with Tox plugin system

The project is an attempt to add to the tox some missing out of the box functionality. Basically it is just an extension for the tool that will be loa

Volodymyr Vitvitskyi 30 Nov 26, 2022