Deep Multimodal Neural Architecture Search

Related tags

Deep Learningmmnas
Overview

MMNas: Deep Multimodal Neural Architecture Search

This repository corresponds to the PyTorch implementation of the MMnas for visual question answering (VQA), visual grounding (VGD), and image-text matching (ITM) tasks.

example-image

Prerequisites

Software and Hardware Requirements

You may need a machine with at least 4 GPU (>= 8GB), 50GB memory for VQA and VGD and 150GB for ITM and 50GB free disk space. We strongly recommend to use a SSD drive to guarantee high-speed I/O.

You should first install some necessary packages.

  1. Install Python >= 3.6

  2. Install Cuda >= 9.0 and cuDNN

  3. Install PyTorch >= 0.4.1 with CUDA (Pytorch 1.x is also supported).

  4. Install SpaCy and initialize the GloVe as follows:

    $ pip install -r requirements.txt
    $ wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
    $ pip install en_vectors_web_lg-2.1.0.tar.gz

Dataset Preparations

Please follow the instructions in dataset_setup.md to download the datasets and features.

Search

To search an optimal architecture for a specific task, run

$ python3 search_[vqa|vgd|vqa].py

At the end of each searching epoch, we will output the optimal architecture (choosing operators with largest architecture weight for every block) accroding to current architecture weights. When the optimal architecture doesn't change for several continuous epochs, you can kill the searching process manually.

Training

The following script will start training network with the optimal architecture that we've searched by MMNas:

$ python3 train_[vqa|vgd|itm].py --RUN='train' --ARCH_PATH='./arch/train_vqa.json'

To add:

  1. --VERSION=str, e.g.--VERSION='mmnas_vqa' to assign a name for your this model.

  2. --GPU=str, e.g.--GPU='0, 1, 2, 3' to train the model on specified GPU device.

  3. --NW=int, e.g.--NW=8 to accelerate I/O speed.

  1. --RESUME to start training with saved checkpoint parameters.

  2. --ARCH_PATH can use the different searched architectures.

If you want to evaluate an architecture that you got from seaching stage, for example, it's the output architecture at the 50-th searching epoch for vqa model, you can run

$ python3 train_vqa.py --RUN='train' --ARCH_PATH='[PATH_TO_YOUR_SEARCHING_LOG]' --ARCH_EPOCH=50

Validation and Testing

Offline Evaluation

It's convenient to modify follows args: --RUN={'val', 'test'} --CKPT_PATH=[Your Model Path] to Run val or test Split.

Example:

$ python3 train_vqa.py --RUN='test' --CKPT_PATH=[Your Model Path] --ARCH_PATH=[Searched Architecture Path]

Online Evaluation (ONLY FOR VQA)

Test Result files will stored in ./logs/ckpts/result_test/result_train_[Your Version].json

You can upload the obtained result file to Eval AI to evaluate the scores on test-dev and test-std splits.

Pretrained Models

We provide the pretrained models in pretrained_models.md to reproduce the experimental results in our paper.

Citation

If this repository is helpful for your research, we'd really appreciate it if you could cite the following paper:

@article{yu2020mmnas,
  title={Deep Multimodal Neural Architecture Search},
  author={Yu, Zhou and Cui, Yuhao and Yu, Jun and Wang, Meng and Tao, Dacheng and Tian, Qi},
  journal={Proceedings of the 28th ACM International Conference on Multimedia},
  pages = {3743--3752},
  year={2020}
}
Owner
Vision and Language Group@ MIL
Hangzhou Dianzi University
Vision and Language Group@ MIL
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022