JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

Overview

JupyterNotebook

Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer

Open In Colab

Requirements

Files

Run code on remote computer

In order to run our code from local computer to remote computer we need to use ssh.
As we, have a jupyter lab/notebook is running we can simply use ssh local port forwoarding to tunnel our ipython files with kernel that we are running.

  • 1st we have to run ipython kernel in terminal
%  ipython kernel 
NOTE: When using the `ipython kernel` entry point, Ctrl-C will not work.

To exit, you will have to explicitly quit this process, by either sending
"quit" from a client, or using Ctrl-\ in UNIX-like environments.

To read more about this, see https://github.com/ipython/ipython/issues/2049


To connect another client to this kernel, use:
    --existing kernel-1839.json

As we get kernel-wxyz.json. we have to read it so we can get which port our jupyter is running.

  • For getting kernel-wxyz.json we can run jupyter --runtime --dir

*Remember in order to execute bash command in Jupyter notebook you have to add "!" before your command.

e.g. !jupyter --runtime --dir

%   jupyter --runtime --dir
/Users/mithunparab/Library/Jupyter/runtime
 %  cd /Users/mithunparab/Library/Jupyter/runtime
 %  ls
.
.
kernel-1839.json
.
.
.
 %  cat kernel-1839.json
{
  "shell_port": 50170,
  "iopub_port": 50174,
  "stdin_port": 50171,
  "control_port": 50172,
  "hb_port": 50176,
  "ip": "127.0.0.1",
  "key": "6a45fe25-2wegc5erw3uro4fw8rw3",
  "transport": "tcp",
  "signature_scheme": "hmac-sha256",
  "kernel_name": ""
}                    
  • After we get the ports, we can do local ssh port forwording

Note: Try to use key based authentication for ssh for security and avoid repeatability of password.

% ssh [email protected] -f -N -L 50170:127.0.0.1:50170
% ssh [email protected] -f -N -L 50174:127.0.0.1:50174
% ssh [email protected] -f -N -L 50171:127.0.0.1:50171
% ssh [email protected] -f -N -L 50172:127.0.0.1:50172
  • copy kernel-wxyz.json to remote computer
% rsync -av [email protected]:.ipython/profile_default/security/kernel-1839.json ~/.ipython/profile_default/security/kernel-1839.json
  • That's it now you can start ipkernel on your remote computer with aboved kernel
% ipython3 console --existing kernel-1839.json

Note:

In Jupyter notebook, LaTex syntax can be execucate using magic tag %%latex
In order to convert yout LaTex to PDF you need to install nbconvert and follow this link for using latex tool of your choice
%%latex supports in Jupyter Notebook but may not work in Google colab

A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023