SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

Overview

SceneCollisionNet

This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more information, please visit the project website.

License

This repo is released under NVIDIA source code license. For business inquiries, please contact [email protected]. For press and other inquiries, please contact Hector Marinez at [email protected]

Install and Setup

Clone and install the repo (we recommend a virtual environment, especially if training or benchmarking, to avoid dependency conflicts):

git clone --recursive https://github.com/mjd3/SceneCollisionNet.git
cd SceneCollisionNet
pip install -e .

These commands install the minimum dependencies needed for generating a mesh dataset and then training/benchmarking using Docker. If you instead wish to train or benchmark without using Docker, please first install an appropriate version of PyTorch and corresponding version of PyTorch Scatter for your system. Then, execute these commands:

git clone --recursive https://github.com/mjd3/SceneCollisionNet.git
cd SceneCollisionNet
pip install -e .[train]

If benchmarking, replace train in the last command with bench.

To rollout the object rearrangement MPPI policy in a simulated tabletop environment, first download Isaac Gym and place it in the extern folder within this repo. Next, follow the previous installation instructions for training, but replace the train option with policy.

To download the pretrained weights for benchmarking or policy rollout, run bash scripts/download_weights.sh.

Generating a Mesh Dataset

To save time during training/benchmarking, meshes are preprocessed and mesh stable poses are calculated offline. SceneCollisionNet was trained using the ACRONYM dataset. To use this dataset for training or benchmarking, download the ShapeNetSem meshes here (note: you must first register for an account) and the ACRONYM grasps here. Next, build Manifold (an external library included as a submodule):

./scripts/install_manifold.sh

Then, use the following script to generate a preprocessed version of the ACRONYM dataset:

python tools/generate_acronym_dataset.py /path/to/shapenetsem/meshes /path/to/acronym datasets/shapenet

If you have your own set of meshes, run:

python tools/generate_mesh_dataset.py /path/to/meshes datasets/your_dataset_name

Note that this dataset will not include grasp data, which is not needed for training or benchmarking SceneCollisionNet, but is be used for rolling out the MPPI policy.

Training/Benchmarking with Docker

First, install Docker and nvidia-docker2 following the instructions here. Pull the SceneCollisionNet docker image from DockerHub (tag scenecollisionnet) or build locally using the provided Dockerfile (docker build -t scenecollisionnet .). Then, use the appropriate configuration .yaml file in cfg to set training or benchmarking parameters (note that cfg file paths are relative to the Docker container, not the local machine) and run one of the commands below (replacing paths with your local paths as needed; -v requires absolute paths).

Train a SceneCollisionNet

Edit cfg/train_scenecollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/train_scenecollisionnet_docker.sh

Train a RobotCollisionNet

Edit cfg/train_robotcollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/train_robotcollisionnet_docker.sh

Benchmark a SceneCollisionNet

Edit cfg/benchmark_scenecollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/models:/models:ro -v /path/to/cfg:/cfg:ro -v /path/to/benchmark_results:/benchmark:rw scenecollisionnet /SceneCollisionNet/scripts/benchmark_scenecollisionnet_docker.sh

Benchmark a RobotCollisionNet

Edit cfg/benchmark_robotcollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro -v /path/to/benchmark_results:/benchmark:rw scenecollisionnet /SceneCollisionNet/scripts/train_robotcollisionnet_docker.sh

Loss Plots

To get loss plots while training, run:

docker exec -d <container_name> python3 tools/loss_plots.py /models/<model_name>/log.csv

Benchmark FCL or SDF Baselines

Edit cfg/benchmark_baseline.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/benchmark_results:/benchmark:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/benchmark_baseline_docker.sh

Training/Benchmarking without Docker

First, install system dependencies. The system dependencies listed assume an Ubuntu 18.04 install with NVIDIA drivers >= 450.80.02 and CUDA 10.2. You can adjust the dependencies accordingly for different driver/CUDA versions. Note that the NVIDIA drivers come packaged with EGL, which is used during training and benchmarking for headless rendering on the GPU.

System Dependencies

See Dockerfile for a full list. For training/benchmarking, you will need:

python3-dev
python3-pip
ninja-build
libcudnn8=8.1.1.33-1+cuda10.2
libcudnn8-dev=8.1.1.33-1+cuda10.2
libsm6
libxext6
libxrender-dev
freeglut3-dev
liboctomap-dev
libfcl-dev
gifsicle
libfreetype6-dev
libpng-dev

Python Dependencies

Follow the instructions above to install the necessary dependencies for your use case (either the train, bench, or policy options).

Train a SceneCollisionNet

Edit cfg/train_scenecollisionnet.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/train_scenecollisionnet.py

Train a RobotCollisionNet

Edit cfg/train_robotcollisionnet.yaml, then run:

python tools/train_robotcollisionnet.py

Benchmark a SceneCollisionNet

Edit cfg/benchmark_scenecollisionnet.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/benchmark_scenecollisionnet.py

Benchmark a RobotCollisionNet

Edit cfg/benchmark_robotcollisionnet.yaml, then run:

python tools/benchmark_robotcollisionnet.py

Benchmark FCL or SDF Baselines

Edit cfg/benchmark_baseline.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/benchmark_baseline.py

Policy Rollout

To view a rearrangement MPPI policy rollout in a simulated Isaac Gym tabletop environment, run the following command (note that this requires a local machine with an available GPU and display):

python tools/rollout_policy.py --self-coll-nn weights/self_coll_nn --scene-coll-nn weights/scene_coll_nn --control-frequency 1

There are many possible options for this command that can be viewed using the --help command line argument and set with the appropriate argument. If you get RuntimeError: CUDA out of memory, try reducing the horizon (--mppi-horizon, default 40), number of trajectories (--mppi-num-rollouts, default 200) or collision steps (--mppi-collision-steps, default 10). Note that this may affect policy performance.

Citation

If you use this code in your own research, please consider citing:

@inproceedings{danielczuk2021object,
  title={Object Rearrangement Using Learned Implicit Collision Functions},
  author={Danielczuk, Michael and Mousavian, Arsalan and Eppner, Clemens and Fox, Dieter},
  booktitle={Proc. IEEE Int. Conf. Robotics and Automation (ICRA)},
  year={2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
Scene text detection and recognition based on Extremal Region(ER)

Scene text recognition A real-time scene text recognition algorithm. Our system is able to recognize text in unconstrain background. This algorithm is

HSIEH, YI CHIA 155 Dec 06, 2022
Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding for Zero-Example Video Retrieval.

Dual Encoding for Video Retrieval by Text Source code of our TPAMI'21 paper Dual Encoding for Video Retrieval by Text and CVPR'19 paper Dual Encoding

81 Dec 01, 2022
Forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE

EAST_ICPR: EAST for ICPR MTWI 2018 CHALLENGE Introduction This is a repository forked from argman/EAST for the ICPR MTWI 2018 CHALLENGE. Origin Reposi

Haozheng Li 157 Aug 23, 2022
The virtual calculator will be above the live streaming from your camera

The virtual calculator is above the live streaming from my camera usb , the program first detect my hand and in each frame calculate the distance between two finger ,if the distance is lower than the

gasbaoui mohammed al amine 5 Jul 01, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
Maze generator and solver with python

Procedural-Maze-Generator-Algorithms Check out my youtube channel : Auctux Ressources Thanks to Jamis Buck Book : Mazes for programmers Requirements P

Joseph 19 Dec 07, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 04, 2023
Convert Text-to Handwriting Using Python

Convert Text-to Handwriting Using Python Description In this project we'll use python library that's "pywhatkit" for converting text to handwriting. t

8 Nov 19, 2022
CRAFT-Pyotorch:Character Region Awareness for Text Detection Reimplementation for Pytorch

CRAFT-Reimplementation Note:If you have any problems, please comment. Or you can join us weChat group. The QR code will update in issues #49 . Reimple

453 Dec 28, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
It is a image ocr tool using the Tesseract-OCR engine with the pytesseract package and has a GUI.

OCR-Tool It is a image ocr tool made in Python using the Tesseract-OCR engine with the pytesseract package and has a GUI. This is my second ever pytho

Khant Htet Aung 4 Jul 11, 2022
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 07, 2022
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022
PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector

Description This is a PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector. Only RBOX part is implemented. Using dice loss

365 Dec 20, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
Python library to extract tabular data from images and scanned PDFs

Overview ExtractTable - API to extract tabular data from images and scanned PDFs The motivation is to make it easy for developers to extract tabular d

Org. Account 165 Dec 31, 2022
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 7 Mar 07, 2022