Instant neural graphics primitives: lightning fast NeRF and more

Overview

Instant Neural Graphics Primitives

Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a factory robot? Of course you have!

Here you will find an implementation of four neural graphics primitives, being neural radiance fields (NeRF), signed distance functions (SDFs), neural images, and neural volumes. In each case, we train and render a MLP with multiresolution hash input encoding using the tiny-cuda-nn framework.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Müller, Alex Evans, Christoph Schied, Alexander Keller
arXiv [cs.GR], Jan 2022
[ Project page ] [ Paper ] [ Video ]

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

Requirements

  • Both Windows and Linux are supported.
  • An NVIDIA GPU; tensor cores increase performance when available. All shown results come from an RTX 3090.
  • CUDA v10.2 or higher, a C++14 capable compiler, and CMake v3.19 or higher.
  • (optional) Python 3.7 or higher for interactive bindings. Also, run pip install -r requirements.txt.
    • On some machines, pyexr refuses to install via pip. This can be resolved by installing OpenEXR from here.
  • (optional) OptiX 7.3 or higher for faster mesh SDF training. Set the environment variable OptiX_INSTALL_DIR to the installation directory if it is not discovered automatically.

If you are using Linux, install the following packages

sudo apt-get install build-essential git python3-dev python3-pip libopenexr-dev libxi-dev \
                     libglfw3-dev libglew-dev libomp-dev libxinerama-dev libxcursor-dev

We also recommend installing CUDA and OptiX in /usr/local/ and adding the CUDA installation to your PATH. For example, if you have CUDA 11.4, add the following to your ~/.bashrc

export PATH="/usr/local/cuda-11.4/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH"

Compilation (Windows & Linux)

Begin by cloning this repository and all its submodules using the following command:

$ git clone --recursive https://github.com/nvlabs/instant-ngp
$ cd instant-ngp

Then, use CMake to build the project:

instant-ngp$ cmake . -B build
instant-ngp$ cmake --build build --config RelWithDebInfo -j 16

If the build succeeded, you can now run the code via the build/testbed executable or the scripts/run.py script described below.

If automatic GPU architecture detection fails, (as can happen if you have multiple GPUs installed), set the TCNN_CUDA_ARCHITECTURES enivonment variable for the GPU you would like to use. Set it to 86 for RTX 3000 cards, 80 for A100 cards, and 75 for RTX 2000 cards.

Interactive training and rendering

This codebase comes with an interactive testbed that includes many features beyond our academic publication:

  • Additional training features, such as extrinsics and intrinsics optimization.
  • Marching cubes for NeRF->Mesh and SDF->Mesh conversion.
  • A spline-based camera path editor to create videos.
  • Debug visualizations of the activations of every neuron input and output.
  • And many more task-specific settings.
  • See also our one minute demonstration video of the tool.

NeRF fox

One test scene is provided in this repository, using a small number of frames from a casually captured phone video:

instant-ngp$ ./build/testbed --scene data/nerf/fox

Alternatively, download any NeRF-compatible scene (e.g. from the NeRF authors' drive). Now you can run:

instant-ngp$ ./build/testbed --scene data/nerf_synthetic/lego

For more information about preparing datasets for use with our NeRF implementation, please see this document.

SDF armadillo

instant-ngp$ ./build/testbed --scene data/sdf/armadillo.obj

Image of Einstein

instant-ngp$ ./build/testbed --scene data/image/albert.exr

To reproduce the gigapixel results, download, for example, the Tokyo image and convert it to .bin using the scripts/image2bin.py script. This custom format improves compatibility and loading speed when resolution is high. Now you can run:

instant-ngp$ ./build/testbed --scene data/image/tokyo.bin

Volume Renderer

Download the nanovdb volume for the Disney cloud, which is derived from here (CC BY-SA 3.0).

instant-ngp$ ./build/testbed --mode volume --scene data/volume/wdas_cloud_quarter.nvdb

Python bindings

To conduct controlled experiments in an automated fashion, all features from the interactive testbed (and more!) have Python bindings that can be easily instrumented. For an example of how the ./build/testbed application can be implemented and extended from within Python, see ./scripts/run.py, which supports a superset of the command line arguments that ./build/testbed does.

Happy hacking!

Thanks

Many thanks to Jonathan Tremblay and Andrew Tao for testing early versions of this codebase and to Arman Toornias and Saurabh Jain for the factory robot dataset.

This project makes use of a number of awesome open source libraries, including:

  • tiny-cuda-nn for fast CUDA MLP networks
  • tinyexr for EXR format support
  • tinyobjloader for OBJ format support
  • stb_image for PNG and JPEG support
  • Dear ImGui an excellent immediate mode GUI library
  • Eigen a C++ template library for linear algebra
  • pybind11 for seamless C++ / Python interop
  • and others! See the dependencies folder.

Many thanks to the authors of these brilliant projects!

License

Copyright © 2022, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License-NC. Click here to view a copy of this license.

Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022