document image degradation

Overview

ocrodeg

The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OCR applications.

The following illustrates the kinds of degradations available from ocrodeg.

%pylab inline
Populating the interactive namespace from numpy and matplotlib
rc("image", cmap="gray", interpolation="bicubic")
figsize(10, 10)
import scipy.ndimage as ndi
import ocrodeg

image = imread("testdata/W1P0.png")
imshow(image)
<matplotlib.image.AxesImage at 0x7fabcc7ab390>

png

PAGE ROTATION

This is just for illustration; for large page rotations, you can just use ndimage.

for i, angle in enumerate([0, 90, 180, 270]):
    subplot(2, 2, i+1)
    imshow(ndi.rotate(image, angle))

png

RANDOM GEOMETRIC TRANSFORMATIONS

random_transform generates random transformation parameters that work reasonably well for document image degradation. You can override the ranges used by each of these parameters by keyword arguments.

ocrodeg.random_transform()
{'angle': -0.016783842893063807,
 'aniso': 0.805280370671964,
 'scale': 0.9709145529604223,
 'translation': (0.014319657859164045, 0.03676897986267606)}

Here are four samples generated by random transforms.

for i in xrange(4):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, **ocrodeg.random_transform()))

png

You can use transform_image directly with the different parameters to get a feel for the ranges and effects of these parameters.

for i, angle in enumerate([-2, -1, 0, 1]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, angle=angle*pi/180))

png

for i, angle in enumerate([-2, -1, 0, 1]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, angle=angle*pi/180)[1000:1500, 750:1250])

png

for i, aniso in enumerate([0.5, 1.0, 1.5, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, aniso=aniso))

png

for i, aniso in enumerate([0.5, 1.0, 1.5, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, aniso=aniso)[1000:1500, 750:1250])

png

for i, scale in enumerate([0.5, 0.9, 1.0, 2.0]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.transform_image(image, scale=scale))

png

for i, scale in enumerate([0.5, 0.9, 1.0, 2.0]):
    subplot(2, 2, i+1)
    h, w = image.shape
    imshow(ocrodeg.transform_image(image, scale=scale)[h//2-200:h//2+200, w//3-200:w//3+200])

png

RANDOM DISTORTIONS

Pages often also have a small degree of warping. This can be modeled by random distortions. Very small and noisy random distortions also model ink spread, while large 1D random distortions model paper curl.

for i, sigma in enumerate([1.0, 2.0, 5.0, 20.0]):
    subplot(2, 2, i+1)
    noise = ocrodeg.bounded_gaussian_noise(image.shape, sigma, 5.0)
    distorted = ocrodeg.distort_with_noise(image, noise)
    h, w = image.shape
    imshow(distorted[h//2-200:h//2+200, w//3-200:w//3+200])

png

RULED SURFACE DISTORTIONS

for i, mag in enumerate([5.0, 20.0, 100.0, 200.0]):
    subplot(2, 2, i+1)
    noise = ocrodeg.noise_distort1d(image.shape, magnitude=mag)
    distorted = ocrodeg.distort_with_noise(image, noise)
    h, w = image.shape
    imshow(distorted[:1500])

png

BLUR, THRESHOLDING, NOISE

There are a range of utilities for modeling imaging artifacts: blurring, noise, inkspread.

patch = image[1900:2156, 1000:1256]
imshow(patch)
<matplotlib.image.AxesImage at 0x7fabc88c7e10>

png

for i, s in enumerate([0, 1, 2, 4]):
    subplot(2, 2, i+1)
    blurred = ndi.gaussian_filter(patch, s)
    imshow(blurred)

png

for i, s in enumerate([0, 1, 2, 4]):
    subplot(2, 2, i+1)
    blurred = ndi.gaussian_filter(patch, s)
    thresholded = 1.0*(blurred>0.5)
    imshow(thresholded)

png

reload(ocrodeg)
for i, s in enumerate([0.0, 1.0, 2.0, 4.0]):
    subplot(2, 2, i+1)
    blurred = ocrodeg.binary_blur(patch, s)
    imshow(blurred)

png

for i, s in enumerate([0.0, 0.1, 0.2, 0.3]):
    subplot(2, 2, i+1)
    blurred = ocrodeg.binary_blur(patch, 2.0, noise=s)
    imshow(blurred)

png

MULTISCALE NOISE

reload(ocrodeg)
for i in range(4):
    noisy = ocrodeg.make_multiscale_noise_uniform((512, 512))
    subplot(2, 2, i+1); imshow(noisy, vmin=0, vmax=1)

png

RANDOM BLOBS

for i, s in enumerate([2, 5, 10, 20]):
    subplot(2, 2, i+1)
    imshow(ocrodeg.random_blobs(patch.shape, 3e-4, s))

png

reload(ocrodeg)
blotched = ocrodeg.random_blotches(patch, 3e-4, 1e-4)
#blotched = minimum(maximum(patch, ocrodeg.random_blobs(patch.shape, 30, 10)), 1-ocrodeg.random_blobs(patch.shape, 15, 8))
subplot(121); imshow(patch); subplot(122); imshow(blotched)
<matplotlib.image.AxesImage at 0x7fabc8a35490>

png

FIBROUS NOISE

imshow(ocrodeg.make_fibrous_image((256, 256), 700, 300, 0.01))
<matplotlib.image.AxesImage at 0x7fabc8852450>

png

FOREGROUND / BACKGROUND SELECTION

subplot(121); imshow(patch); subplot(122); imshow(ocrodeg.printlike_multiscale(patch))
<matplotlib.image.AxesImage at 0x7fabc8676d90>

png

subplot(121); imshow(patch); subplot(122); imshow(ocrodeg.printlike_fibrous(patch))
<matplotlib.image.AxesImage at 0x7fabc8d1b250>

png

Owner
NVIDIA Research Projects
NVIDIA Research Projects
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.7k Dec 25, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want.

Virtual Keyboard With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want. At

Güldeniz Bektaş 5 Jan 23, 2022
Validate and transform various OCR file formats (hOCR, ALTO, PAGE, FineReader)

ocr-fileformat Validate and transform between OCR file formats (hOCR, ALTO, PAGE, FineReader) Installation Docker System-wide Usage CLI GUI API Transf

Universitätsbibliothek Mannheim 152 Dec 20, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Crop regions in napari manually

napari-crop Crop regions in napari manually Usage Create a new shapes layer to annotate the region you would like to crop: Use the rectangle tool to a

Robert Haase 4 Sep 29, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
Generate a list of papers with publicly available source code in the daily arxiv

2021-06-08 paper code optimal network slicing for service-oriented networks with flexible routing and guaranteed e2e latency networkslicing multi-moda

79 Jan 03, 2023
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc.

EasyOCR Ready-to-use OCR with 80+ languages supported including Chinese, Japanese, Korean and Thai. What's new 1 February 2021 - Version 1.2.3 Add set

Jaided AI 16.7k Jan 03, 2023
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike

Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and

Peter M. Stahl 532 Dec 28, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 47k Jan 07, 2023
Some codes from PyImageSearch course's and external projects.

👨‍💻 Some codes and projects 👨‍💻 💡 Technologies 📜 Projects 📍 Chrome Dinosaur Controller 📦 Script 📍 Coins Counter 📦 Script 🤓 Author Lucas Biv

Lucas Bivar 25 Oct 24, 2021
Repository collecting all the submodules for the new PyTorch-based OCR System.

OCRopus3 is being replaced by OCRopus4, which is a rewrite using PyTorch 1.7; release should be soonish. Please check github.com/tmbdev/ocropus for up

NVIDIA Research Projects 138 Dec 09, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 91 Nov 22, 2022
scantailor - Scan Tailor is an interactive post-processing tool for scanned pages.

Scan Tailor - scantailor.org This project is no longer maintained, and has not been maintained for a while. About Scan Tailor is an interactive post-p

1.5k Dec 28, 2022