Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

Overview

FCS-applications

Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture.

Introduction

This repository contains the program of the training and testing procedures of FCS-CsiNet and FCS-CRNet proposed in Boyuan Zhang, Haozhen Li, Xin Liang, Xinyu Gu, and Lin Zhang, "Fully Connected Layer-Shared Network Architecture for Massive MIMO CSI Feedback" (submitted to IET Electronics Letters).

Requirements

  • Python 3.5 (or 3.6)
  • Keras (>=2.1.1)
  • Tensorflow (>=1.4)
  • Numpy

Instructions

The following instructions are necessary before the network training:

  • The repository only provide the programs used for the training and testing of the FCS-CsiNet and FCS-CRNet in the form of python files. The network models in the form of h5 files are not included.
  • The part "settings of GPU" in each python file should be adjusted in advance according to the device setting of the user.
  • The experiments of different Compression Rates can be performed by adjusting the "encoded_dim" in the programs.
  • The folds named "result" and "data" should be established in advance in the folds "FCS-CsiNet" and "FCS-CRNet" to store the models obtained during the training procedure and to store the dataset used for training and testing.
  • The dataset used in the network training can be downloaded from https://drive.google.com/drive/folders/1_lAMLk_5k1Z8zJQlTr5NRnSD6ACaNRtj?usp=sharing, which is first provided in https://github.com/sydney222/Python_CsiNet). The dataset should be put in the folds "data". Therefore, the structure of the folds "FCS-CsiNet" and "FCS-CRNet" should be:
*.py
result/
data/
  *.mat

Training Procedure

The training and testing procedures are demonstrated as follows:

Step.1 Main training process

Run Step1_main_training_1.py and Step1_main_training_12.py to obtain the parameters of the shared FC layer and the pre-trained models of the other parts of the network.

Step.2 Assistant review processes

Run Step2_assistant_review.py to obtain the model used in Scenario_1. The feedback accuracy of the model in Scenario_1 will be also be calculated in Step.2.

Step.3 Assistant compensation process

Run Step3_assistant_compensation.py to obtain the model used in Scenario_2. The feedback accuracy of the model in Scenario_2 will be also be calculated in Step.3.

The results are given in the submitted manuscript "Fully Connected Layer-Shared Network Architecture for Massive MIMO CSI Feedback".

Owner
Boyuan Zhang
Boyuan Zhang
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
Awesome-NLP-Research (ANLP)

Awesome-NLP-Research (ANLP)

Language, Information, and Learning at Yale 72 Dec 19, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022