LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Related tags

Deep LearningLQM
Overview

Improving Object Detection by Estimating Bounding Box Quality Accurately

Abstract

Object detection aims to locate and classify object instances in images. Therefore, the object detection model is generally implemented with two parallel branches to optimize localization and classification. After training the detection model, we should select the best bounding box of each class among a number of estimations for reliable inference. Generally, NMS (Non Maximum Suppression) is operated to suppress low-quality bounding boxes by referring to classification scores or center-ness scores. However, since the quality of bounding boxes is not considered, the low-quality bounding boxes can be accidentally selected as a positive bounding box for the corresponding class. We believe that this misalignment between two parallel tasks causes degrading of the object detection performance. In this paper, we propose a method to estimate bounding boxes' quality using four-directional Gaussian quality modeling, which leads the consistent results between two parallel branches. Extensive experiments on the MS COCO benchmark show that the proposed method consistently outperforms the baseline (FCOS). Eventually, our best model offers the state-of-the-art performance by achieving 48.9% in AP. We also confirm the efficiency of the method by comparing the number of parameters and computational overhead.

Overall Architecture

Implementation Details

We implement our detection model on top of MMDetection (v2.6), an open source object detection toolbox. If not specified separately, the default settings of FCOS implementation are not changed. We train and validate our network on four RTX TITAN GPUs in the environment of Pytorch v1.6 and CUDA v10.2.

Please see GETTING_STARTED.md for the basic usage of MMDetection.

Installation


  1. Clone the this repository.

    git clone https://github.com/POSTECH-IMLAB/LQM.git
    cd LQM
  2. Create a conda virtural environment and install dependencies.

    conda env create -f environment.yml
  3. Activate conda environment

    conda activate lqm
  4. Install build requirements and then install MMDetection.

    pip install --force-reinstall mmcv-full==1.1.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html
    pip install -v -e .

Preparing MS COCO dataset


bash download_coco.sh

Preparing Pre-trained model weights


bash download_weights.sh

Train


# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with COCO dataset in 'data/coco/'

./tools/dist_train.sh configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py 4 --validate

Inference


./tools/dist_test.sh configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py work_dirs/uncertainty_guide_r50_fpn_1x/epoch_12.pth 4 --eval bbox

Image demo using pretrained model weight


# Result will be saved under the demo directory of this project (detection_result.jpg)
# config, checkpoint, source image path are needed (If you need pre-trained weights, you can download them from provided google drive link)
# score threshold is optional

python demo/LQM_image_demo.py --config configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py --checkpoint work_dirs/pretrained/LQM_r50_fpn_1x.pth --img data/coco/test2017/000000011245.jpg --score-thr 0.3

Webcam demo using pretrained model weight


# config, checkpoint path are needed (If you need pre-trained weights, you can download them from provided google drive link)
# score threshold is optional

python demo/webcam_demo.py configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py work_dirs/pretrained/LQM_r50_fpn_1x.pth

Models


For your convenience, we provide the following trained models. All models are trained with 16 images in a mini-batch with 4 GPUs.

Model Multi-scale training AP (minival) Link
LQM_R50_FPN_1x No 40.0 Google
LQM_R101_FPN_2x Yes 44.8 Google
LQM_R101_dcnv2_FPN_2x Yes 47.4 Google
LQM_X101_FPN_2x Yes 47.2 Google
LQM_X101_dcnv2_FPN_2x Yes 48.9 Google
Owner
IM Lab., POSTECH
IM Lab., POSTECH
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision

MLP Mixer Implementation for paper MLP-Mixer: An all-MLP Architecture for Vision. Give us a star if you like this repo. Author: Github: bangoc123 Emai

Ngoc Nguyen Ba 86 Dec 10, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022