Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Overview

Range Image-based 3D LiDAR Localization

This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicles.

Developed by Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe and Jens Behley.

It uses a novel sensor model with MCL to achieve 3D LiDAR global localization and pose tracking. The sensor model compares the range image of the current LiDAR scan to the synthetic range images rendered from the triangular mesh to update the weight of particles. This method is simple but can be used with different types of LiDAR scanners in different datasets and environments without fine-tuning.

Online localization demo.

Visualizations: Left: the triangular mesh and the localization results; Right: Sub-tile maps

Table of Contents

  1. Introduction
  2. Publication
  3. Dependencies
  4. How to use
  5. Related work
  6. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper:

@inproceedings{chen2021icra,
	author = {X. Chen and I. Vizzo and T. L{\"a}be and J. Behley and C. Stachniss},
	title = {{Range Image-based LiDAR Localization for Autonomous Vehicles}},
	booktitle = icra,
	year = 2021,
	url = {http://www.ipb.uni-bonn.de/pdfs/chen2021icra.pdf},
	codeurl = {https://github.com/PRBonn/range-mcl}
}

Dependencies

The code was tested with Ubuntu 20.04 with its standard python version 3.8.

We are using OpenGL to do achieve fast rendering, so you will need an OpenGL capable graphics card (we use Nvidia cards, e.g. 2080Ti) to be fast.

  • System dependencies related to OpenGL:

    sudo apt-get update 
    sudo apt-get install libgl1-mesa-glx
  • Other system dependencies:

    sudo apt-get update 
    sudo apt-get install libusb-1.0   # open3d 0.12.0 dependency
    sudo apt-get install -y python3-pip
    sudo -H pip3 install --upgrade pip
  • Python dependencies (may also work with different versions than mentioned in the requirements file)

    sudo -H pip3 install -r requirements.txt

How to use

Quick use

For a quick demo, one could download the mesh map and LiDAR data, extract the them in the /data folder following the recommended data structure, and then run:

cd src/
python3 main_range_mcl.py

One could then get the online visualization of range-based MCL as shown in the gif.

More detailed usage

Here, we provide more detailed information about our range-image-based LiDAR localization method, including building mesh maps, evaluating the localization results and more pre-built maps of different datasets.

Build mesh map

To build a mesh map, we use the Poisson surface reconstruction provided by the Open3D library. One need to download the LiDAR data, extract the them in the /data folder following the recommended data structure, and then run:

python3 build_mesh_map.py

Notice that, we used our moving object segmentation method (coming soon) cleaned the scans before building the map. One could also use other methods to clean the map.

For fast calculating and generating range and normal data for LiDAR scans, one could find more details here.

Evaluation

Once finished the localization process, one would get the localization results at /results. To evaluate the localization results, one could check the evaluation.py. For a quick demo, one just need to run

python3 evaluation.py

Collection of mesh maps

Notice that, the mesh maps were generated using the data from KITTI dataset, MulRan dataset and Apollo dataset. Please register on their official website to apply for the original data.

Related work

Puma: Poisson Surface Reconstruction for LiDAR Odometry and Mapping

We also released the implementation of the algorithms described in our paper Poisson Surface Reconstruction for LiDAR Odometry and Mapping. This is a LiDAR Odometry and Mapping pipeline that uses the Poisson Surface Reconstruction algorithm to build the map as a triangular mesh online.

Overlap-localization: Overlap-based 3D LiDAR Monte Carlo Localization

We previously also proposed a learning-based global localization method, called overlap localization. It uses the OverlapNet to train an observation model for Monte Carlo Localization and achieves global localization with 3D LiDAR scans.

License

Copyright 2021, Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe, Jens Behley, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Comments
  • some problem

    some problem

    image

    [email protected]:~/range-mcl/src$ python3 main_range_mcl.py INFO - 2021-06-24 00:21:08,437 - acceleratesupport - OpenGL_accelerate module loaded INFO - 2021-06-24 00:21:08,451 - arraydatatype - Using accelerated ArrayDatatype Load mesh map and initialize map module... lower bound: [-137.51303435084705, -53.88607274849302] upper bound: [170.8931181474161, 237.73366404891496] number of tiles = 8 total number of triangles: 4282269 WARNING - 2021-06-24 00:21:21,473 - numpymodule - Unable to load numpy_formathandler accelerator from OpenGL_accelerate Monte Carlo localization initializing... 段错误 (核心已转储)

    opened by conancheng 2
  • Regd. CARLA data

    Regd. CARLA data

    Hi,

    Thank you for your work and the open source release. I was wondering if you have released the CARLA sequence (mesh map, odometry etc.) from your experiments somewhere?

    opened by karnikram 0
  • Error with the DISPLAY environment variable

    Error with the DISPLAY environment variable

    Hi there, thanks for providing the code to test. However, I got an issue running the code.

    ==================================================================

    Message=index 0 is out of bounds for axis 0 with size 0 Source=F:\Capstone\algorithms\range_mcl\src\utils.py StackTrace: File "F:\Capstone\algorithms\range_mcl\src\utils.py", line 340, in load_poses_kitti inv_frame0 = np.linalg.inv(poses[0]) File "F:\Capstone\algorithms\range_mcl\src\main_range_mcl.py", line 49, in (Current frame) map_poses = load_poses_kitti(map_pose_file, map_calib_file)

    ======================================================================

    I tried to search for the GLFWError 65544 but none of the solutions seems to work. Is there anything idea what is happening?

    Regards Jimmy

    opened by GinWeng 1
  • 20.04 python3.8 can't be running...

    20.04 python3.8 can't be running...

    [email protected]:~/range-mcl-main/src$ python3 main_range_mcl.py INFO - 2021-08-06 11:42:08,929 - acceleratesupport - OpenGL_accelerate module loaded INFO - 2021-08-06 11:42:08,931 - arraydatatype - Using accelerated ArrayDatatype Load mesh map and initialize map module... lower bound: [-137.51303435084705, -53.88607274849302] upper bound: [170.8931181474161, 237.73366404891496] number of tiles = 8 total number of triangles: 4282269 WARNING - 2021-08-06 11:42:12,640 - numpymodule - Unable to load numpy_formathandler accelerator from OpenGL_accelerate Monte Carlo localization initializing... 段错误 (核心已转储) 2021-08-06 14-09-58屏幕截图

    2021-08-06 14-09-33屏幕截图

    opened by conancheng 4
  • How the algorithm runs in real time and its compatibility with solid-state lidar positioning?

    How the algorithm runs in real time and its compatibility with solid-state lidar positioning?

    The work is excellent and I'm honor to study for it.But I have two questions about it: 1、how the algorithm runs in real time not need "velodyne_bin" 2、its compatibility with solid-state lidar ,such as livox I'm looking forward to your answers,thank you Yours sincerely

    opened by PigletPh 8
  • python main_range_mcl.py problem

    python main_range_mcl.py problem

    OS: ubuntu2004 python: Python 3.8.5 gpu: GeForce GTX 1060 drive NVIDIA-SMI 460.56 Driver Version: 460.56 CUDA Version: 11.2

    $ python main_range_mcl.py ... finished frame 1099 with time of: 7.22408e-05 s finished frame 1100 with time of: 5.55515e-05 s Average runtime after convergence: 0.16806003594713895 save the localization results at: ../results/demo_loc_results.npz Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlTextureBuffer.del at 0x7efcd4e45ca0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 128, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlFramebuffer.del at 0x7efcd4e4e9d0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 624, in del AttributeError: 'NoneType' object has no attribute 'glDeleteFramebuffers' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlRenderbuffer.del at 0x7efcd4e4e5e0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 591, in del AttributeError: 'NoneType' object has no attribute 'glDeleteRenderbuffers'

    opened by improve100 3
Releases(v1.0)
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Code for our paper "Sematic Representation for Dialogue Modeling" in ACL2021

AMR-Dialogue An implementation for paper "Semantic Representation for Dialogue Modeling". You may find our paper here. Requirements python 3.6 pytorch

xfbai 45 Dec 26, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

Jiayi Weng 110 Dec 27, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021