Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Overview

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

This is the code repository for Advanced Deep Learning with TensoFlow 2 and Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

Please note that the code examples have been updated to support TensorFlow 2.0 Keras API only.

About the Book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.

Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.

Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.

Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

Related Products

Installation

It is recommended to run within conda enviroment. Pls download Anacoda from: Anaconda. To install anaconda:

sh

A machine with at least 1 NVIDIA GPU (1060 or better) is required. The code examples have been tested on 1060, 1080Ti, RTX 2080Ti, V100, RTX Quadro 8000 on Ubuntu 18.04 LTS. Below is a rough guide to install NVIDIA driver and CuDNN to enable GPU support.

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt update

sudo ubuntu-drivers autoinstall

sudo reboot

nvidia-smi

At the time of writing, nvidia-smishows the NVIDIA driver version is 440.64 and CUDA version is 10.2.

We are almost there. The last set of packages must be installed as follows. Some steps might require sudo access.

conda create --name packt

conda activate packt

cd

git clone https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

cd Advanced-Deep-Learning-with-Keras

pip install -r requirements.txt

sudo apt-get install python-pydot

sudo apt-get install ffmpeg

Test if a simple model can be trained without errors:

cd chapter1-keras-quick-tour

python3 mlp-mnist-1.3.2.py

The final output shows the accuracy of the trained model on MNIST test dataset is about 98.2%.

Alternative TensorFlow Installation

If you are having problems with CUDA libraries (ie tf could not load or find libcudart.so.10.X), TensorFlow and CUDA libraries can be installed together using conda:

pip uninstall tensorflow-gpu
conda install -c anaconda tensorflow-gpu

Advanced Deep Learning with TensorFlow 2 and Keras code examples used in the book.

Chapter 1 - Introduction

  1. MLP on MNIST
  2. CNN on MNIST
  3. RNN on MNIST

Chapter 2 - Deep Networks

  1. Functional API on MNIST
  2. Y-Network on MNIST
  3. ResNet v1 and v2 on CIFAR10
  4. DenseNet on CIFAR10

Chapter 3 - AutoEncoders

  1. Denoising AutoEncoders

Sample outputs for random digits:

Random Digits

  1. Colorization AutoEncoder

Sample outputs for random cifar10 images:

Colorized Images

Chapter 4 - Generative Adversarial Network (GAN)

  1. Deep Convolutional GAN (DCGAN)

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

Sample outputs for random digits:

Random Digits

  1. Conditional (GAN)

Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 5 - Improved GAN

  1. Wasserstein GAN (WGAN)

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein GAN." arXiv preprint arXiv:1701.07875 (2017).

Sample outputs for random digits:

Random Digits

  1. Least Squares GAN (LSGAN)

Mao, Xudong, et al. "Least squares generative adversarial networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Sample outputs for random digits:

Random Digits

  1. Auxiliary Classfier GAN (ACGAN)

Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional image synthesis with auxiliary classifier GANs. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017."

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 6 - GAN with Disentangled Latent Representations

  1. Information Maximizing GAN (InfoGAN)

Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." Advances in Neural Information Processing Systems. 2016.

Sample outputs for digits 0 to 9:

Zero to Nine

  1. Stacked GAN

Huang, Xun, et al. "Stacked generative adversarial networks." IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2. 2017

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 7 - Cross-Domain GAN

  1. CycleGAN

Zhu, Jun-Yan, et al. "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Sample outputs for random cifar10 images:

Colorized Images

Sample outputs for MNIST to SVHN:

MNIST2SVHN

Chapter 8 - Variational Autoencoders (VAE)

  1. VAE MLP MNIST
  2. VAE CNN MNIST
  3. Conditional VAE and Beta VAE

Kingma, Diederik P., and Max Welling. "Auto-encoding Variational Bayes." arXiv preprint arXiv:1312.6114 (2013).

Sohn, Kihyuk, Honglak Lee, and Xinchen Yan. "Learning structured output representation using deep conditional generative models." Advances in Neural Information Processing Systems. 2015.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. β-VAE: Learning basic visual concepts with a constrained variational framework. ICLR, 2017.

Generated MNIST by navigating the latent space:

MNIST

Chapter 9 - Deep Reinforcement Learning

  1. Q-Learning
  2. Q-Learning on Frozen Lake Environment
  3. DQN and DDQN on Cartpole Environment

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529

DQN on Cartpole Environment:

Cartpole

Chapter 10 - Policy Gradient Methods

  1. REINFORCE, REINFORCE with Baseline, Actor-Critic, A2C

Sutton and Barto, Reinforcement Learning: An Introduction

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International conference on machine learning. 2016.

Policy Gradient on MountainCar Continuous Environment:

Car

Chapter 11 - Object Detection

  1. Single-Shot Detection

Single-Shot Detection on 3 Objects SSD

Chapter 12 - Semantic Segmentation

  1. FCN

  2. PSPNet

Semantic Segmentation

Semantic Segmentation

Chapter 13 - Unsupervised Learning using Mutual Information

  1. Invariant Information Clustering

  2. MINE: Mutual Information Estimation

MINE MINE

Citation

If you find this work useful, please cite:

@book{atienza2020advanced,
  title={Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more},
  author={Atienza, Rowel},
  year={2020},
  publisher={Packt Publishing Ltd}
}
Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023