PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

Overview

PASSL

Introduction

PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to accelerate research cycle in self-supervised learning: from designing a new self-supervised task to evaluating the learned representations.

  • Reproducible implementation of SOTA in Self-Supervision: Existing SOTA in Self-Supervision are implemented - SimCLR, MoCo(v1),MoCo(v2), MoCo-BYOL, CLIP. BYOL is coming soon. Also supports supervised trainings.
  • Modular: Easy to build new tasks and reuse the existing components from other tasks (Trainer, models and heads, data transforms, etc.).

Installation

Implemented Models

Benchmark Linear Image Classification on ImageNet-1K

epochs official results passl results Backbone Model
MoCo 200 60.6 60.64 ResNet-50 download
SimCLR 100 64.5 65.3 ResNet-50 download
MoCo v2 200 67.7 67.72 ResNet-50 download
MoCo-BYOL 300 71.56 72.10 ResNet-50 download
BYOL 300 72.50 71.62 ResNet-50 download

Getting Started

Please see GETTING_STARTED.md for the basic usage of PASSL.

Tutorials

Comments
  • MLP-Mixer: An all-MLP Architecture for Vision

    MLP-Mixer: An all-MLP Architecture for Vision

    readme文件里的两个模型的TOP1 是不是写反了?模型大的准确度比模型小的准确度小一些?

    Arch | Weight | Top-1 Acc | Top-5 Acc | Crop ratio | # Params -- | -- | -- | -- | -- | -- mlp_mixer_b16_224 | pretrain 1k | 76.60 | 92.23 | 0.875 | 60.0M mlp_mixer_l16_224 | pretrain 1k | 72.06 | 87.67 | 0.875 | 208.2M

    opened by gaorui999 3
  • 我很关注图像分类的自监督进展

    我很关注图像分类的自监督进展

    小弟想问问,对于图像分类的自监督,目前是什么进展呢?比如猫狗分类这种典型的二分类准确率如何?imagenet1k分类准确率如何?PASSL里面的关于图像分类的自监督算法或者模型,有哪些?能给个例子,让我知道如何使用吗?目前看到PASSLissues才1条,文档完全没看到.方便加个微信或者QQ聊几句吗?小弟对于图像分类的自监督高度重视.还有一个疑问,关于图像分类的自监督模型,是不是我给一堆图片,模型运行后,就会把图片归类呢?我需不需要给出类别的数量呢?说白了,我想知道图像分类的自监督的一个使用流程.现在都1.0了,该有点用处了吧.如果一个模型运行后,图像就分好类了,归纳为N类,我有什么办法判断分类的正确性呢?这方面有算法吗? 提了很多问题,跪求每个问题都回答一下,谢谢大佬.

    opened by yuwoyizhan 2
  • Unintended behavior in clip_logit_scale

    Unintended behavior in clip_logit_scale

    https://github.com/PaddlePaddle/PASSL/blob/83c49e6a5ba3444cee7f054122559d7759152764/passl/modeling/backbones/clip.py#L317

    check this issue for reference https://github.com/PaddlePaddle/Paddle/issues/43710

    Suggested approach (with non-public API)

    logit_scale_buffer = self.logit_scale.clip(-4.6, 4.6)
    logit_scale_buffer._share_buffer_to(self.logit_scale)
    
    opened by minogame 1
  • 建议

    建议

    1.passl很多文字都是英文的,包括快速使用等文档,希望可以提供中文文档. 2.希望知道图像分类自监督学习的技术研究目前到达什么程度了.比如猫狗这种二分类准确率如何,imagenet准确率如何,使用passl进行图像分类,需要给类别总数量吗? 3.能加个QQ或者微信聊几句吗?有些疑问,拜托了,大佬. QQ:1226194560 微信:18820785964

    opened by yuwoyizhan 1
  • fix bug of mixup for DeiT

    fix bug of mixup for DeiT

    DeiT/B-16 pretrained on ImageNet1K:

    [01/21 02:54:46] passl.engine.trainer INFO: Validate Epoch [290] acc1 (81.336), acc5 (95.544)
    [01/21 03:02:31] passl.engine.trainer INFO: Validate Epoch [291] acc1 (81.328), acc5 (95.580)
    [01/21 03:10:20] passl.engine.trainer INFO: Validate Epoch [292] acc1 (81.390), acc5 (95.608)
    [01/21 03:18:10] passl.engine.trainer INFO: Validate Epoch [293] acc1 (81.484), acc5 (95.636)
    [01/21 03:26:00] passl.engine.trainer INFO: Validate Epoch [294] acc1 (81.452), acc5 (95.600)
    [01/21 03:33:52] passl.engine.trainer INFO: Validate Epoch [295] acc1 (81.354), acc5 (95.528)
    [01/21 03:41:38] passl.engine.trainer INFO: Validate Epoch [296] acc1 (81.338), acc5 (95.562)
    [01/21 03:49:25] passl.engine.trainer INFO: Validate Epoch [297] acc1 (81.344), acc5 (95.542)
    [01/21 03:57:15] passl.engine.trainer INFO: Validate Epoch [298] acc1 (81.476), acc5 (95.550)
    [01/21 04:05:03] passl.engine.trainer INFO: Validate Epoch [299] acc1 (81.476), acc5 (95.572)
    [01/21 04:12:51] passl.engine.trainer INFO: Validate Epoch [300] acc1 (81.386), acc5 (95.536)
    
    opened by GuoxiaWang 1
  • BYOL的预训练中好像使用了gt_label?

    BYOL的预训练中好像使用了gt_label?

    • 在byol的config 中设置了 num_classes=1000: https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/configs/byol/byol_r50_IM.yaml#L34
    • 在model中设置了self.classifier = nn.Linear(embedding_dim, num_classes),并且forward中将classif_out和label一起传给了head

    image

    https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/passl/modeling/architectures/BYOL.py#L263

    • 在L2 Head中将对比loss和有监督的CE loss加在了一起返回

    image

    https://github.com/PaddlePaddle/PASSL/blob/9d7a9fd4af41772e29120553dddab1c162e4cb70/passl/modeling/heads/l2_head.py#L43

    opened by youqingxiaozhua 0
  • [飞桨论文复现挑战赛(第六期)] (85) Emerging Properties in Self-Supervised Vision Transformers

    [飞桨论文复现挑战赛(第六期)] (85) Emerging Properties in Self-Supervised Vision Transformers

    PR types

    New features

    PR changes

    APIs

    Describe

    • Task: https://github.com/PaddlePaddle/Paddle/issues/41482
    • 添加 passl.model.architectures.dino

    Peformance

    | Model | Official | Passl | | ---- | ---- | ---- | | DINO | 74.0 | 73.6 |

    • [x] 预训练和linear probe代码
    • [ ] 预训练和linear probe权重
    • [ ] 文档
    • [ ] TIPC
    opened by fuqianya 0
Releases(v1.0.0)
  • v1.0.0(Feb 24, 2022)

    • 新增 XCiT 视觉 Transformer 模型 xcit_nano_12_p8_224 蒸馏模型训练指标对齐,感谢 @BrilliantYuKaimin 的高质量贡献 🎉 🎉 🎉

    PASSL飞桨自监督领域核心学习库,提供大量高精度的视觉自监督模型、视觉 Transformer 模型,并支持超大视觉模型分布式训练功能,旨在提升飞桨开发者在自监督领域建模效率,并提供基于飞桨框架2.2的超大视觉模型领域最佳实践

    Source code(tar.gz)
    Source code(zip)
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022